Universidade de Sao Paulo - Escola Politécnica
Departamento de Engenharia Mecénica

q!((w'(&w

&

Desenvolvimento de linguagem de

Programacao para Robos Méveis

Autor :
Valdir Grassi Junior

Trabalho de Gradugao
Engenharia Mecanica — Automagéao e Sistemas

QOrientador :
Jun Okamoto Jr.

EPUSP - 1998

INDICE ...coceircsnens P " N wl
1. INTRODUCAO ... inerrerrsernsonsssesssases 3
2, OBJETIVO .vvierenneene P .y
3. ROBOS MOVEIS uereeiverrenseressossssossssses e T o ST e T e ST e — 5
4. DEF]NICEO DOS COMANDOS DA LINGUAGEM DE PROGRAMACAO.....occrneermssassssnsens 7
5. PROJETO DO SISTEMA DE CONTROLE DE POSICAO E VELOCIDADE.......cconnssiserseases 17
5.1 MODELO DINAMICO DA PLANTAoeviiieiiireeeeteeiveasianeeseneenas s aansenainseeaasesesssassssansamans e irseanraeeseeee 17
5.1.1 Modelo dindmico mecanico do roDOo.oovivveveeieiiii it e 17

5.1.2 Modelo Dindmico do Motor DC...........cooiiiciiiiiie s tesscantese e smeesssisssassasssbns s isesrsany e sasmseees 20

5.1.3 Caracteristicas do Motor DC e do RobBO MOVeL.............oovvvvvorceineccciiiiiii e 21

5.1.4 Torque de Carga (T 22

5.2 PROIETO DO CONTRCLE DE POSICAO .. 22
5.3 RESULTADOS DA SIMULACAO DO CONTROLE DEPOSICAO ..ot 27
5.4 DISCRETIZAGAO DO CONTROLADOR DE POSICAOovioveicvicicctceccectein e 31
5.5 CONTROLE IDE VELOCIDADE ... oo iotitvetieere e vanees s ssesaeteaees e s essaab bt bt resmeesaeasssasisanbne s traeaaaenaen 37

6. IMPLEMENTACAO DE COMANDOS..ccccisenrernss SO " 40
6.1 SISTEMADE CONTROLE EM TEMPO REAL ...ttt s ettt v ecete st e a e s e vt e e n e 40
6.2 ROTINAS DE INTERFACE COMO USUARID ...ooot et et e v s e et e e s e e s a b 43
6.2.1 Reconhecimento de COMANADS.ccooeeeeeiiiieiiiiinraniiisienssssasremseisreaiest rasb e aa s annsa s ioeesen 43

6.2.2 Manipulagdo de Valores ASCII, Hexadecimal, e Decimal.............c.cooovviniiinmniinnnnnns 45

6.2.3 Modos de Operaglio - SETMODE < 10,1,2°+ ..o 45

6. 2.4 HEID (7] eeveooereveeesvenisssseess e sossss s e s R 46

B. 2.5 TCCIA CHFI-X @ CHFI-Zo oo tvseiinte s s s ineser s e esberta e s rms s e e e sea e s saa s b e s e st bt T e e se s e e s st u it 46

6.3 CONTROLE DE POSICAO — COMANDOS DE MOVIMENTOoviiiiniinreriien e irenie e e 46
B.3. 0 ACCIBFQQAOconevereeriirre ettt e a eSS bbbt 47

6.3.2 Calculo de Posi¢lo ABSOIta ATHULccoviviriveieneii e 47

6.3.3 Comando MOVE, MOVEREL, e MOVEABS -..c.oocvie ittt 48

6.3.4 Fungbes Seno, Coseno, Arco Tangente, e Teorema de Pitldgoras.................ccoveveiinieniiaen. 49

6.3.5 Caleulo de Posiciio — Comando MOVE............coiiiminnnernnve i 350

6.4 SET DE PARAMETROS ... eeeeeeeoeeeseeeee et i et sasteesare s 2s e est s 2steams e e st ensaeabtsaane s e emn e e s sen e enanes st ber s 51
6.5 COMANDOS DE EXIBICAD . ..o ee oot ittt sttt ars et e e aeeeee e e et te s e e o atb e s s ibt e e s s m e e e e e e s et r s era e 51
6.5 MOVIMENTO ATRAVES DO JOYSTICK — SET JOYSTICK ... 52

6.6 TABELA DE PONTOSoot ittt ittt et htete e e s e aae e rs et r e s A H e Ty e s s n s e e e 52

G601 SET TABLEo.oeoeoevesvvrareeeeeeemeseseasasasaeseseembebenensassasessenbibitsas st atabassasasasaaasenssssseutonsansatsnsins 52

G B.2 MOVETAB...oooeceeee s cart e aeee e et a e in et ses s sts et s s raaa T rs s e ae s e oo sk b b ae s e s aae e e aas s iasa e e e s s d e b et A e e n s 33
6.6.3LOADTAB e UPLOADTAR.oovi it iriee ettt st ssabe s emsb s st s 54

6.7 PROGRAMAGAD ..o oottt ettt ae e eae e e b e na et b s s 54
A -3 4 1 AU U PO O PP VPO ORI PP PRI TPSPIPRE 53

6.7.3 IFEQ, IENE, IFGT, efc, € GOTO ...ttt 56

6.7.4 SET VAR INC, @ DEC ...cooioivinieeeieeeeee sttt sian sty emse et s st sab s 56

6.7.5 CLEAR, LIST € EDIT ...coviviieietiee e seseecie s ssiasisis s smssst s s e b st snsn s s snsnssnns 57

6.7.6 CoOMaNAOS de ESPOFAovvvvvvereeecricciintiise st misias s s st b s s 57

6.7.7 LOAD @ UPLOAD ...ooooveive et e tiniasteesssnasnns sra e e sea s s sr s es ettt s be 57

6.8 SUGESTOES PARA IMPEEMENTAGCAO FUTURAocooiiiiiiiiriiiiis et ee et es s s 57

T. CONCLUSADuovnsiveersseesseresssasessssmsssssssessssssssssontssss assasssssssssasssssrsssssassssssssassrssssssasssssssssassassasesesss 59
8. REFERENCIAS BIBLIOGRATFICASccoismrsnsssorsssessssessessrsossases . 60

1. Introducao

No ano de 1994 foi iniciado no Departamento de Engenbaria Mecénica da
Universidade de Sdo Paulo um projeto denominado Base Mével. Este projeto foi
realizado por alunos de graduagio sob a orientagio do Prof. Dr. Jun Okamoto Jr, €
constituiu-se na elaboragio e construgdo de um veiculo de pequeno porte do tipo AGV
destinado a transportar sensores em um laboratorio para a realizagdo de pesquisas na
area de visfo.

Este projeto teve continuidade nos anos seguintes, onde se deu a elaboragfo de
um hardware eletronico para controle deste robd movel, e também um software
constituidos de comandos basicos para interface do usuario com o hardware eletrénico
do robb.

A Base Movel foi projetada para se deslocar no plano bidimensional, sendo que
possui um formato cilindrico, e € dotada de trés rodas motoras que estergam ao mesmo
tempo. Desta forma possui a capacidade de fazer curvas em canto VIVO.

O acionamento das rodas é feito por dois motores, um motor de passo que
realiza o estergamento das rodas, € um motor DC responsavel pela translagéo da base
moével no plano. Entre cada motor e as rodas existe um sistema de redugdio composto de
polias de correia dentada e engrenagens.

O hardware eletronico da Base Movel possui os seguintes componentes
principais : microcontrolador 8032, driver PWM, driver de motor de passo,
comunicacdo serial com PC, interface para joystick e sistema para contagem dos pulsos
vindos do encoder do motor DC. O programa de controle da Base Movel ¢ armazenado
em uma EPROM., sendo que o sistema possui uma memoéria RAM para armazenar
dados temporarios. Todo este hardware eletronico foi projetado de maneira a ser
compacto para que seja embarcado na Base Movel.

Além do hardware eletronico, se encontrava desenvolvido um software dotado
de comandos e fungdes basicas que funcionam em um sistema de tempo real. Estes
comandos e funcdes sio simples ¢ permitem, por exemplo, escrever uma palavra no
driver de PWM ou de motor de passo, permitem uma contagem de 32 bits dos puisos de
encoder, visualizar continuamente os valores de encoder € posi¢do da alavanca do
joystick, ja havia disponivel também uma estrutura de programa em tempo real, no
entanto, estes comandos ndo eram suficientes para controle adequado do movimento do

robo.

2. Objetivo

Para que se tenha o controle adequado do movimento de um robd movel,
especificamente a Base Mbvel, ¢ necessrio possuir um conjunto de comandos que
permitam a um usudrio fazer com que o robd se movimente da maneira desejada.
Também ¢ interessante que se possa construir programas que descrevam a determinada
trajetoria que o robd deve seguir. Para tanto ¢ necessario ter uma linguagem de
programagéo para o robd. Como esta linguagem e os comandos pertencentes a ela ainda
ndo tinham sido desenvolvidos e implementados para a Base Movel, ela nfo era capaz
ainda de se movimentar por trajetdrias pré-definidas.

O objetivo deste projeto é justamente desenvolver uma linguagem de
programagdio para um robd movel, sendo que esta linguagem seja composta de
comandos de alto nivel que devem ser executados em uma estrutura de software de
tempo real.

Os comandos pertencentes a linguagem de programagdo seréio implementados e
testados na Base Movel. Os comandos de movimento devem ser de facil uso pelo
usuario, sendo que representem de maneira adequada a trajetoria que o robd deve fazer.
Estes comandos devem usar um sistema de controle de posi¢io em malha fechada com
realimentacdio dada pelo encoder. Também ¢é desejavel que além da posiibilidade de se
descrever trajetorias através de programas, se use o joystick para movimentar o robd, e
também que seja possivel a captura de pontos para formagdo de uma tabela que possa

ser reproduzida posteriormente, fazendo com que o robd passe pelos pontos capturados.

3. Robdés Moveis

Existe uma variedade muito grande de robds moveis, e eles se diferenciam entre
si pela construgdo mecénica € pelo hardware eletrénico. A parte mecénica do robd ¢
fundamental para definir onde ele podera se locomover € o que podera ser capaz de
fazer ou ndo. Por exemplo, existem robds moveis que se deslocam através de "patas”,
tentando reproduzir o movimento que insetos como aranha ou formiga fazem. Estes
robds sdo construidos para que possam se deslocar em solos irregulares, € s30 capazes
de se transpor obsticulos como pequenas pedras. Existem robds moveis submarinos,
que precisam se locomover em trés dimensdes. Estes robds sdo usados para atingir
profundidades elevadas onde dificilmente o homem pode ir. Podemos encontrar ainda
robds moveis que possuem esteiras, como tanques de guerra, € robds moéveis que
possuem quatro rodas, sendo que as duas rodas dianteiras possuem tragiio independente
e a diferenca de velocidade entre elas faz com que © robd faga curvas. Também existem
robds moveis com trés rodas, como um triciclo, sendo que a da frente € motora € pode
mudar a dire¢io do robd.

Como se pode ver, podem ser feitas muitas variagdes nas caracteristicas
mecanicas dos robds, e assim construir um que se adequa melhor a aplicagio desejada.

Para cada tipo de robd, a implementagdo dos comandos e da linguagem proposta
neste trabalho seré diferente, pois ela depende das caracteristicas construtivas, € tambem
do hardware eletronico do robd. Desta forma, serd desenvolvido e implementados
comandos para a Base Mével. No entanio, 0 algoritmo de alguns comandos, a estrutura
do software de controle, a estrutura da linguagem de programag#o, € as rotinas para
reconhecimento desta linguagem podem ser aproveitadas € usadas em outros tipos de
robds moveis.

Os robds moveis podem possuir uma série de sensores, ¢ a partir dos sinais
recebidos por eles, usando um sistema de inteligéneia artificial, o robd pode tomar
decisdes e entdo se locomover. Isto ¢ usado quando se deseja explorar lugares
desconhecidos que o homem nZo pode ir, como regides proximas a vulcdes, ou
superficies de outros planetas como Marte. Também é usado para que permita ao robd
desviar de obstaculos que eventualmente podem haver na sua trajetoria, evitando assim
acidentes. Em relagdo a metodologia usada para mover tais robds usando sistemas
inteligentes, existem duas teorias principais : 0 método tradicional, e o método baseado

em comportamento proposto por Rodney Brooks.

O método tradicional se baseia em coletar informagdes através dos sensores,
construir uma representagio do modelo do mundo em volta do robd atraves da fuséo dos
dados coletados pelos sensores, € entdo planejar as agdes baseado no modelo adquirido.
Por exemplo: o robd através de uma camera de video capta a imagem do que esta a sua
frente, entdo & feito uma andlise deste sinal, dai percebe-se que existe um obstaculo na
sua frente e que este obstdculo tém uma largura 'x' , a partir deste dado ¢ feito uma
mudangca na trajetéria para que o robd desvie deste obstaculo.

O método proposto por Brooks ndo faz a fusdo dos dados coletados pelos
sensores, € nem um modelo do mundo exterior ao robd. Este método se baseia em
programar varios comportamentos que o robd deve ter em resposta a algo, estes
comportamentos possuem um nivel hierdrquico, € comportamentos que possuem um
nivel hierdrquico alto, quando ativados, sdo executados em preferéncia aqueles de nivel
mais baixo. Isto ndo quer dizer que os comportamentos de nivel hierarquico inferior ndo
deixem de ser gerados, mas eles ndo sdo executados quando um comportamento de
nivel alto ests ativado. Como ilustragdio, suponha que o comportamento de nivel mais
baixo habilite uma acfio de andar para qualquer lugar e o de nivel mais alto inicia um
comportamento de seguir a luz, entio normalmente, o robd ira andar sem rumo,
movendo-se aleatoriamente. No entanto, quando alguém apontar uma lanterna para o
robd, o comportamento de andar aleatoriamente sera ignorado em detrimento do
comportamento de seguir a luz que acaba de ser ativado e possui nivel maior. O robd ird
entfio seguir em diregdo 4 luz até que a lanterna seja apagada, quando o comportamento
de andar sem rumo ir voltar a ter preferéncia. Uma observagio que deve ser feita € que
mesmo quando o comportamento de seguir a luz estava ativado, 0 outro comportamento
também estava sendo gerado mas nfo estava sendo executado pois ndo tem a
preferéncia.

O projeto que serd desenvolvido este ano, ndo possui nenhuma caracteristica de
inteligéncia artificial, embora posteriormente a este trabalho podem ser feitas pesquisas
nesta area, podendo utiliza-lo como ponto de partida. No entanto, neste trabalho, deseja-
se que a trajetéria do robd mével que estiver sendo controlado seja bem definida, e esta
seja especificada pelo usuario. Desta forma, este trabatho se enquadra com maior
facilidade no método tradicional de controle utilizando inteligéncia artificial, ja que serd
desenvolvido os comando para que se possa programar uma trajetoria definida,

conhecido o caminho.

4. Definicdo dos Comandos da Linguagem de Programacao

A primeira tarefa a ser realizada ¢ a de definir o projeto. Para isto deve-se definir
como sera a interface do usuario com o robd moével, para que possa haver a
programacio do robd, e a execugdo de comandos associados ac movimento do robd e
captura de dados. Esta interface pode ser determinada definindo-se os comandos que
farfio parte tanto da linguagem de programagio como do software de controle, € também
definindo-se a sintaxe destes comandos.

Como neste trabalho hd um grande interesse em implementar a linguagem de
programagdo na Base Mével, optou-se por ndio se aprofundar no estudo de sintaxes de
linguagens de programagfo, sendo que ao se definir a sintaxe, utilizou-se o
conhecimento sobre linguagens de programacfo existentes como basic, C, e pascal.
Também baseou-se nos comandos disponiveis em programas de desenho como
AutoCAD para definigio dos comandos. Como se quer descrever trajetorias do robd, € o
que se faz em programas como o AutoCAD ¢ descrever desenhos, ou trajetorias,
através de varios comandos, optou-se por se basear no conjunto de fungdes ¢ pardmetros
exigidos por elas disponivets em tal software.

Um outro fator importante que entrou na decis3o de como seria a sintaxe foi a
facilidade ou nfio de se reconhecer 0 comando e os pardmetros a partir da linha de
comando digitada, j& que a rotina de reconhecimento dos comandos segundo a sintaxe
especificada deve ser implementada pois o reconhecimento deles néo ¢ imediato. O
usudrio entra através do teciado a linha de comando, esta fica armazenada em uma
string de caracteres e depois esta string deve ser interpretada e retirado os pardmetros ¢
o comando.

Baseado nos fatores descritos acima, definiu-se os comandos que fardo parte da
linguagem de programagfo, e do software de controle do robd movel. Juntamente com a
defini¢io destes comandos, ja se determinou como seria a interface do usuario com o
programa de controle e programagio da Base Moével.

Os comandos definidos podem ser divididos por tipos de comandos, estes podem
Ser :

e Comandos de Set de ParAmetros : Estes comandos definem o valor de

constantes usadas nos demais comandos, ou entfo habilitam ¢ desabilitam o
funcionamento de alguns dos modos de operagdo do robd ou do software de

controle. Os comandos sfio os seguintes :

— SET MODE <0,1,2> : Seleciona o modo de operagic do software de

controle do robd. Os modos de operagio possiveis sdo : modo normal
(0), modo de programagdo (1), ¢ modo de manutengdo (2). Cada
comando pode ser definido para funcionar ou nfio em cada modo de
operagio. O modo default é 0 modo normal, sendo que o modo de
programagéo é usado para editar programas, € 0 modo de manuteng@o
para ter acesso & valores de constantes internas ao sistema de controle,
tais como valor do encoder, ou valor do eixo do joystick.

SET JOYSTICK <0,1> : Este comando desabilita (0) ou habilita (1) o
modo de movimento do robd através do joystick.

SET TABLE <0,1> : Habilita (1) ou desabilita (0) a capturagio de
pontos para formar uma tabela que poderd posteriormente ser seguida.
Os pontos podem ser capturados pressionando um botdio do joystick,
por exemplo. A tabela ¢ armazenada na memoria € depois pode ser
salva em arquivo.

SET TRANSMAXVEL <value> : Define o valor da velocidade
méaxima de translagio do robé movel em mm/s. Esta velocidade
servira como base para os comandos de movimento, ja que ©
pardmetro que define a velocidade nestes comandos, € expresso em
porcentagem da velocidade maxima.

SET TRANSVEL <value> : Define a velocidade defaulr em
porcentagem da velocidade maxima a ser usada nos comandos de
movimento.

SET ROTMAXVEL <value> : Define a velocidade maxima de
estergamento das rodas. Assim como a velocidade maxima de
translacdo, este pardmetro serve de base para os comandos de
movimento.

SET ROTVEL <value> : Define a velocidade de estercamento das
rodas expresso em porcentagem de velocidade maxima.

SET POSITION <valuel> <value2> : Define a posi¢do absoluta atual
do robd. Os parametros 1 e 2 representam as coordenadas da posigdo,
respectivamente 'x' ¢ 'y’ se 0 sistema atual for cartesiano, ¢ ' € '0' se 0

sistema for o de coordenadas polares.

— SET COORDENATE <0,1> : Define o sistema de coordenadas atual
como sendo cartesiano (0), ou polar (1).

¢ Comandos de Movimento : So comandos que fazem com que o robd movel

se movimente, ou deixe de se movimentar até que uma condigio seja
satisfeita. Estes comandos sfo :

— MOVEABS <valor1> <valor2> <valor3> : Este comando faz com que
o robd se desloque para uma posicio absoluta dada pelos dois
primeiros parimetros, com uma velocidade dada pelo terceiro
pardmetro que € expressa em porcentagem da velocidade maxima pré-
definida. O terceiro pardmetro é opcional, € quando omitido ¢
substituido pelo valor da velocidade default também pré-definida. Os
pardmetros 1 e 2 sfo respectivamente as coordenadas 'x' e 'y' da
posicdo final quando o sistema de coordenadas ativo ¢ o sistema
cartesiano, e sdo as coordenadas 'r' e '6' quando o sistema ativo é o de
coordenadas polares;

— MOVEREL <valorl> <valor2> <valor3> : Este comando faz com que
0 robd se desloque para uma coordenada relativa. Os pardmetros
seguem a mesma regra do comando anterior.

— MOVE <valorl> <valor2> : Este comando realiza apenas uma
translagdo simples de uma distdncia dada pelo parametro 1 com uma
velocidade dada pelo pardmetro 2 expressa em porcentagem da
velocidade maxima.

— ROTATE <valorl> <valor2> : Este comando realiza uma mudanca na
direcdio das rodas de um valor dado pelo parametro 1 expresso em
graus com uma velocidade dada pelo pardmetro 2 expressa em
porcentagem da velocidade maxima de rotag@o das rodas.

— MOVETAB <valuel> : Faz com que o rob0 descreva uma trajetoria
que passe pelos pontos definidos em uma tabela previamente
carregada pelo usudrio. A trajetoria descrita consciste em fazer uma
interpolagdo lincar entre os pontos, para isso estes pontos sdo
armazenados de forma que representem distancias relativas em x e y.

A velocidade utilizada ¢ a velocidade definida no pardmetro 1.

— RUN : Executa programa carregado na memoria.

WAITTIME <value> : Faz com que o robd espere na posigio atual
durante um determinado tempo definido pelo pardmetro do comando.
WAITBUTTON : Faz com que o robd espere na posigio atual até que
seja pressionado um botdo do joystick.

WAITKEY : Faz com que o robd espere na posi¢io atual até ser
pressionado uma tecla do keyboard.

OBS: Nos comandos de movimento, todos os pardmetros de
velocidade se omitidos ou iguais a zero, sdo substituidos pela
velocidade default. Os pardmetros de posi¢io sfo sempre expresssos
em milimetros, € os de velocidade em porcentagem de velocidade

maxima.

¢ Comandos de Exibicdo : Sdo comandos que mostram pardmetros e

informagdes sobre o robd ao usuario. Estes comandos séo :

SHOW VELOCITY : Mostra velocidade atual do rob6

SHOW CVELOCITY : Mostra continuamente na tela a velocidade do
robd até que seja pressionado ctrl-x.

SHOW POSITION : Mostra posigédo atual do robd

SHOW CPOSITION : Mostra continuamente na tela a posigio do
robd até que seja pressionado ctrl-x.

SHOW PARAMETERS : Mostra os pardmetros definidos pelo
usudrio, como velocidades maximas, velocidades default, mostra se
modo joystick ativo ou inativo, etc.

? (HELP) : Mostra um texto explicativo dos comandos disponiveis no

modo atual de operagéo.

e Comandos de Manutengdo : Sdo comandos que funcionam apenas no modo

de manutencdo. Eles sfo :

CENC : Comando do modo de manutengdo que mostra continuamente
o valor do encoder até que seja pressionado ctrl-x.

READENC : Mostra o valor atual do encoder.

CJOY : Mostra continuamente o valor da posicio do eixo do joystick
até que sgja pressionado ctrl-x.

READIJOY <0,1> : Mostra o valor atual do eixo 'x'(0) ou 'y'(1) do

10

Joystick
PWM <valuel> <value2> : Escreve uma palavra dada pelo pardmetro

1 no driver de PWM definido pelo numero dado pelo pardmetro 2.

e Comandos de Ioad e Upload de arquivos : S&o comandos que gravam ¢ 1€em

arquivos de programas e tabelas. Os comandos s&0 :

LOAD : Carrega arquivo de programa.

LOADTAB : Carrega arquivo de tabela. Este tipo de arquivo possui 0
seguinte formato : Cada valor deve ser colocado em uma linha
diferente sendo que a primeira linha deve conter a coordenada X, e a
segunda a coordenada Y, e assim por diante. Desta forma a cada duas
linhas do arquivo, obtenho uma posigHo relativa diferente.

UPLOAD : Salva arquivo de programa.

UPLOADTAB : Salva arquivo de tabela no formato definido acima.

e Comandos de Edicdo de programas : SZo comandos que funcionam no modo

de programagiio ¢ servem para editar programas carregados na memoria. Os

comandos sdo :

<value> <string de _comando> : Quando se entra no modo de
programacdo e se comega a linha de comando com um numero, a
string digitada posteriormente ao numero € inserida na linha dada por
este niimero. Conforme o usudrio for inserindo linhas de programa,
estas vio sendo interpretadas e armazenadas na memoria do robd. O
usuario pode inseri-las em qualquer ordem, sendo que elas sdo
internamente ordenadas pelo valor da linha. A execugdo normal do
programa segue a sequéncia numérica das linhas, da de menor valor
para a de maior valor. Exemplo de inser¢io de comando : 20
MOVEABS 10 15 - aqui 0 comando MOVEABS ¢ colocado na linha
de namero 20 do programa. Obs: definiu-se que o valor de linha ndo
pode ser zero.

CLEAR <value> : Apaga a linha cujo numere se entrou Como
pardmetro. Caso o paridmetro seja nulo, oun omitido, todo o programa €
apagado.

LIST <value> : Mostra a linha de programa desejada. Se o pardmetro

for omitido ou nulo, o programa todo ¢ mostrado.

11

e Comandos de Controle de programas : Até agora foram definidos os

comandos do software de controle, € os comandos que poderdo ser inseridos
no corpo de um programa para executar movimentos, ou setar parimetros. No
entanto existem comandos que fazem a tarefa de controlar a execugfo do
programa, € estes comandos estdo definidos a seguir :

— SETVAR <var_number> <number> : O programa permite utilizar 10
varidveis internas que sdio usadas como contadores. Estas variaveis
podem ser incrementadas, decrementadas, e pode-se atribuir valores a
elas. Esta fungfo atribui um valor dado pelo parametro 2 (“number”) a
um contador referenciado pelo parametro 1 (“var_number”). Os
contadores sdo referenciados por niimeros de 0 a 9 (cada contador
possui um nimero). Exemplo : SET VAR 0 10 - Atribui valor 10 ao
contador 0.

— INC <var_number> : Incrementa o contador “var_number”.

— DEC <var_number> : Decrementa o contador “var_number”.

— GOTO <value> : Muda a sequéncia de execugfio dos comandos
pulando para a linha definida pelo pardmetro dado.

— IFEQ <var_number> <number> <line_number> : Este comando faz
uma comparagio do valor contido na varidvel interna de indice
“var_number” com o valor entrado no campo “number”. Se os dois
valores forem iguais, entdo a sequéncia de execugfo ¢ desviada para a
linha de nimero “line_number™.

— IFGT <var number> <number> <line number> : Se valor em
“var_number” maior que “number” entdo vai para linha
“line_number”.

— IFGE <var number> <number> <line number> : Se valor em
“var_number” maior ou igual a “number” entfio vai para linha
“line_number”.

— IFLT <var_number> <number> <line number> : Se valor em
“var_number” menor que “number” entdo vai para linha
“line_number”.

— IFLE <var_number> <number> <line number> : Se wvalor em

“var number” menor ou igual a “number” entdo val para linha

12

“line_number”.

— IFNE <var number> <number> <line number> : Se valor em
“var_number” diferente de “number” entdo vai para linha
“line_number”.

_ Observagio : Todos os comandos apresentados aqui s3o usados
apenas em programas, portanto devem ser precedidos do numero da
linha.

e Observacio final quanto aos comandos : Todas os pardmetros de posi¢do

devem estar em milimetros, € os pardmetros de velocidade em porcentagem
de velocidade, com excegio do comando se ajuste da velocidade méaxima de
translagdo, onde a velocidade ¢ dada por mmn/s. E importante observar que
para todos os comandos aqui definidos existe um modo em que ele pode
operar. Na tabela 1 se encontra a relagéio de todos os comandos definidos, €
em que modo de operagdo estes comandos podem ser executados.

o Consideracio em relacdo a funcionalidade do sistema : Na tabela 2 se

encontra quando determinados comandos néo podem ser acionados em
funcdio de outros comandos. Exemplo : o comando MOVE nio pode ser
acionado quando ndo terminou o movimento de um outro comando MOVE.
Assim como esta testrigio, a tabela 2 mostra as restrigoes existentes. Também
¢ importante informar que pressionando a tecla ctrl-z, o sistema € resetado, €

inicializado novamente.

A interface do usuario com o software de controle € feita através de interface
serial. O esquema a seguir mostra o exemplo de como ¢ a interface do sistema com 0
usudrio. Observe que para cada modo de operagdo, ¢ usado um prompt diferente.

Pode-se perceber pelo exemplo dado, de como ¢ a interface com o usudrio.
Como resultado de trabalhos anteriores, ja havia sido implementado grande parte dos
elementos da interface como prompt, backspace, cabegalho, etc. No entanto o sistema
ndio apresentava todos os componentes de interface necessarios, sendo que algumas
rotinas que ndo estavam disponiveis foram desenvolvidas. Estas rotinas vdo desde
reconhecimento de comandos segundo a sintaxe definida, até impressdo de numeros
inteiros em decimal, o que ndo é imediato para o sistema. Grande parte do sistema de

controle de execugiio de comandos também teve de ser implementada neste projeto.

13

Alguns detalhes de implementag8o serdo mostrados posteriormente.

Exemplo de Interface

____[:: Projeto Base Movel - EPUSF
abegalho Software de Controle - 1998

, >SHOW POSITION
~ . . |
= X:0 Y:0
mpt >SET POSITICK 100 200 I—-—
>MOVEREL 200 400 80

>SET MODE 1 — -
Program Mode — 1
$10 SET POSITION 0 0
$20 SET VAR 1 0

$30 MOVEABS 500 500 80
$40 WAITTIME 30

$50 MOVEREL -500 0 30

560 MOVEREL 0 -500 40

$70 INC 1

80 IFNE 1 5 30 I
$SET MODE O —_— — —
Normal Mode = T — !
>RUN

Running Program |
>SET MODE 2
Maintenance Mode
PWM 0 TF

Tabela 1 - Relagéo dos comandos, e modo de execucdo em que séo aceitos.

Modo

Normal

IUTENGE

Modo de Execugéo
Comandos
Normal (>} | Programagéo ($) | Manutengéo ($)
Comandos de Set de Parametros
SET MODE v v v
SET JOYSTICK v — —
SET TABLE v — o
SET TRANSMAXVEL v COM -
SET TRANSVEL v COM e
SET ROTMAXVEL v COM —
SET ROTVEL v COM —
SET POSITION v COM —
SET COORDENATE v cCOM —

14

Tabela 1 {cont.) - Relagio dos comandos, e modo de execucdo em gue s&0 aceitos.

Modo de Execugdo
Comandos

Normal (>) | Programagao ($) | Manutengédo ($)

Comandos de Movimento
MOVEABS v COM —
MOVEREL v COM
MOVE v COM v
ROTATE v COM v
MOVETAB v COM e
RUN v - o
WAITTIME - COM —
WAITBUTTON COM —
WAITKEY --- cOoM —

Comandos de Exibigdo
SHOW VELOCITY v =
SHOW CVELOCITY v _
SHOW FOSITION v — —
SHOW CPOSITION v —
SHOW PARAMETERS v -
? (HELP) v v v
Comandos de Load e Upload
LOAD v — .
LOADTAB v — —
UPLOAD v —— "
UPLOADTAB v |
Comandos de Edigédo

LIST — v
CLEAR v —
DEL -— v -
<value> <comando> — v —_

Comandos de Manutengéo
CJoY - - v
CENC - - v
READENC - - v
READJOY - v
PWM - v

Tabela 1 {cont.) - Relagdo dos comandos, e modo de execucdo em que s&o aceitos.

Modo de Execugéo
Comandos
Normal (>) | Programagéo ($) | Manutencdo (#)
Comandos de Controle de Programa
SET VAR - COoM -—
INC COM -
DEC COM —
IFNE, IFEQ, IFGE, ... COM —
GOTO - COM
END — COM -

Obs: Na coluna de Modo de programagéo, quando estd marcado ‘COM’ significa que o
comando sé pode ser usado no corpo de um programa como linha de comando. ‘v’
significa que o comando é executado.

Tabela 2 — Restrigdo quanto ao uso de alguns comandos em certas situagdes do sistema.

Comando que se
deseja executar

Acdo que esta sendo acontecendo no robd

Modo Joystick
ligado

Executando
Programa

Executando
Tabela

Robé em
movimento

SET JOYSTICK 1

RUN

MOVE

MOVEREL

MOVEABS

MOVETAB

SET POSITION

SET TRANSMAXVEL

SET MODE

LOAD, LOADTAB

PWM

OBS: v :indica que comando pode ser executado

--- : indica que nfo pode ser executado

16

5. Projeto do Sistema de Controle de Posigao e Velocidade

O movimento de translagdo da Base Movel ¢ efetuado por um motor DC. Desta
forma, é necessario que haja um controle em malha fechada da posicio do rob6. Este
sistema de controle de posigdo sera utilizado por todos os comandos de movimento que
realizam uma translagio do robd.

Para obter o sistema de controle de posi¢do, primeiramente modelou-se a Base
Movel com o motor DC, feito isto, projetou-se um controlador de posigéo com o auxilio
do programa Matlab. Foram feitos entdio simulagdes do modelo, e entfio discretizou-se o
controlador para se obter a equagfo de diferengas dele. A partir desta equagio € possivel
a implementagio do controle de posigio na Base Mdvel.

O detalhamento das etapas feitas se encontra a seguir.

5.1 Modelo dindamico da planta

Para se chegar ao modelo dindmico da Base Mével, modelou-se o motor DC ¢

também a parte mecénica do robd.

5.1.1 Modelo dindmico mecinico do robd

O modelo dindmico do robd quando este acelera, pode ser determinado pela seguinte
sequéncia de calculos :
Sabendo-se que o torque resultante em uma roda ¢ igual a inércia angular vezes a
variagdo de velocidade angular dela; temos que em uma das rodas do robd :
dog 8 M-R? dog
dt 3 dt

onde, Jg é a inércia da roda (kg.m”)

R T,=Jg-

—h

M ¢ a massa do robd (kg)
‘I;i M R ¢ o raio da roda {m)

oR € a velocidade angular da roda (rad/s)

17

No par de engrenagens que liga a roda as polias, temos :

T, R R M-R? dw
F : T, R, 2 \R, 3 R) adt
Ry onde, R é o raio da engrenagem maior
T R; é 0 raio da engrenagem menor
F‘
Ry

Nas expressdes acima, foram desprezadas as inércias das engrenagens

Em uma das polias movidas :

2
T do R M-R? dw
3 T,-T,=J, —=T,=|{| =% +1 |+] P
e T e HRIJ[3 R] "} dt

Jp

onde, Jp ¢ a inércia da polia movida (kg.m%)

op é a velocidade angular na polia movida (rad/s)

Devido a relagio de transmissfo nas polias dentadas, o torque na polia motora € :

onde, R, é o raio da polia menor (motora)

R; é o raio da polia maior (movida)

18

onde, Jpv € a inéreia da polia motora (kg.m?)

@py € a velocidade angular na polia motora (rad/s)

Antes de chegar ao motor, existe um planetario. Entdo o torque fica :

Tg

1
|p| T6 =._"'T5

Ipp
Tg

IR, V(R, Y R, Y(R, V R, Y 1 ¥ do
— 22 e D2 22 ot B o SR
TG‘L[RINRJM R +{R1MRJJR+3JP(RJ o IJ dt

onde, ip;. € a relagio de transmissdo do planetario (ip;, > 1)
o € a velocidade angular do motor

Pode-se escrever a expresso acima da seguinte forma :

Te =1 EQ %
Finalmente, a equag8o de torque no motor levando-se em conta a inércia do robd
fica ;
T, a TE~T6=JMd—CtO-:>Te=(JM+JEQ)%$
onde, Ji é a inércia do motor (kg m?)
Ym T, € o torque elétrico

Portanto a inércia equivalente do robd, pode ser dada pela seguinte expressgo :
2 2 2 2 2 2 2 2 2
R R 1 R R 1 R 1 1
N o RS (o L [C PREA LS (£ pEMES
. R,/ \R;/ \ip, Ry J\R;/ \ip) °® i R,/ \ip ™ Ip,
Como em relagio a massa do robd, as inéreias das polias séio de ordem de grandeza

wnferior, pode-se despreza-las para efeitos de projeto do controlador de posigio.

Portanto nesta expressao, considera-se apenas o termo envolvendo a massa -

2 2 2
R2 R4)(1] 2
=|=2|=%1|=—| MR
Txq (RIMRg e

19

5.1.2 Modelo Dinamice do Motor DC

Pode-se representar uma maquina de corrente continua da seguinte forma :

Figura 1 - Esquema de motor de corrente continua

Nomenclatura :

V, -~ Tensédo da armadura

iy - Corrente de armadura ou de torque
€. - Forga contra-eletromotriz

V¢ - Tensdo de excitagiio ou de campo
if - Corrente de excitag&o ou de campo
L, - indutincia de armadura

R. - Resisténcia de armadura

Ly - Induténcia de campo

R - resisténcia de campo

As equagdes dinamicas so :

T, =T, =] %—tc?—+13-0)

onde : T, € o torque elétrico (Nm)

T, é o torque de carga (Nm)

20

J = Iu + Jug (Inéreia do motor + Inéreia equivalente do robd) (Nm)
B & um tipo de atrito expresso em Nm/(rad/s)
® € a rotagdo do motor em rad/s
Para motores de corrente continua com imds permanentes, Ve = Ry . ir, € 0 fluxo
¢ constante. Portanto pode-se dizer que :
Te=Ki.1a
ca=Ke. ®
Fazendo a Transformada de La Place nestas equagles, tem-se :
V,()=R, [, (s)+L, - 1,(s)-s+e,(s)
T, (s)—T.(s)=J-W(s)-s+B-W(s)
e,(5)=K, - W(s)
T.(9)=K,-1,(s)
Manipulando as equagdes acima, chega-se & :
V. (s) - T, (s)

Ia(S)= (RS +L8 .S)
Wi LO-LE)
(B+1J-s)

Podemos expressar as equagdes na forma do seguinte grafo :

’ o v |
Seat Velckade

va - LastRa
(raxi’s)

Figura 2 - Diagrama de blocos do Modelo da Méquina de Corrente Continua

5.1.3 Caracteristicas do Motor DC e do Robd Mével

O motor DC usado na Base Mével é um motor de 15 Watt da Maxon Motor. O
nimero deste motor é o 966, e segundo o catalogo do fabricante ele possui as seguintes

caracteristicas :

21

e Voltagem nominal : 12 V

¢ Resisténcia de terminal (R;) : 3.18 Ohm

» Constante de torque (Kp) : 23x10” Nm/A

o Constante elétrica (Kg) : 23x10 V/(rad/s)

e Inércia do rotor (Jy) : 2,43x10° kg.m”

o Indutincia do terminal (L) : 0.53x10° H

A Base Movel possui as seguintes caracteristicas :
e Massa(M):7,2kg

e Raio das rodas (R) : 41x10” m

* R,/R; (relagéo de transmiss@o das engrenagens) : 4
e R4/R; (relagédo de transmisséo das polias) : 1.25
e ip_ (relaglio de transmissdo no planetario) : 5.2

e Jpo=1,8x107

5.1.4 Torque de Carga (Ty)

Admitindo-se que B = 0, quando néo ha variagio de velocidade : Tt = Tg = K1.1,

Portanto, mediu-se a corrente quando a velocidade ¢ maxima no motor, € a partir
dai calculou-se o torque de carga. A corrente observada foi da ordem de 0.4 A. Entfo,
como Kt = 23.0x10™ N/A , conclui-se que o torque de carga é da ordem de 0.0092 N.

Admitiu-se que este forque € constante.

5.2 Projeto do Controle de Posicao

Simplificando o diagrama de blocos do motor, chega-se a seguinte expressdo
que descreve a planta :
KT
(J-L,)s* +(R,-TJ+L_-B)-s+(R, -B+K; K,)

G(s) =

onde, J € a inércia do motor somado com a inércia do robd

Pode-se admitir para este motor que sua indutincia € zero, ja que o valor desta ¢
muito inferior em comparagio com o valor do termo envolvendo resisténcia € inércia.
Também se considerou B = 0 para este problema.

Portanto, pode-se simplificar a expressio para :

Ky

R, -J-s+K; K,

G(s)=

22

O sistema em malha fechada de posigao fica sendo :

Theta s —w{_Theta |
= = -T heta
= RarlatKi'Ke b e
Posicao de Pos
nefe 1 noia (m,

(m

Figura 3 - Planta simplificada com ganhos de PWM e relacfio de transmisséio

Onde PWM significa um ganho que transforma valores entre <128 ¢ 128 em
valores entre -12 e 12, que ¢ a tenso de alimentagdo do motor. R/n é o ganho que
transforma angulo em rad do eixo do motor em distdncia em metro percorrida pela roda.

A funcfio de transferéncia em malha aberta da planta, se adicionarmos um ganho
K antes do PWM, fica :

X(s) __ K-KpuKe'R

Xr(s)—-X(s) n(R,-J-s*+K;-K,-s)

Para os valores dados anteriormente, com n = 4x1,25x5,2 ; € Kpyum = 9,375x10‘2:

X(s) __ 0,0523-K
X, (s)—X(s) s-(s+8,14)

E desejavel que a resposta em regime deste sistema com um controlador
proporcional K, para uma entrada rampa, seja menor que 1%, entfo pode-se tirar que :
Xr
(s) = 0,01
X(s) |
1+L J
(Xr(s) - X(s))

& = lims- (Xr(s) ~ X(s)) = lims-—

Para X,(s) = 1/s* , temos que :

) (s+8,14)
= l B
€= I 7 8145400523k~ 0!

Portanto : K > 15557

Rescrevendo a fungéio de transferéncia em malha aberta da planta com este controlador

proporcional, fica :

815

T e

No entanto, a resposta a rampa unitaria apresenta uma oscilagio inicial e final,

como verifica-se na figura 4 .

23

Figura 4 - Grifico da planta com controlador proporcional 4 resposta a rampa

Para diminuir esta oscila¢do, escolheu-se projetar um controlador do tipo phase-
lead, que ird funcionar juntamente com o ganho K projetado acima. Este controlador

possui a seguinte forma :

_(I+a-T-s)

Gl ="17T-9

A fungio de malha aberta fica sendo :
815 (1+a-T-s)

s-(s+8,14) (1+T-s)

G(s)-G.(s) =

A equagfio caracteristica de malha fechada, ou seja, o denominador da fungio de
G(s)-G(s) ‘.

1+ G(s)-G.(s)

S.(s+8,14)(1+T.s) + 815.(1+0.T.5) =0

Dividindo por s’ +8,14.5+ 815, fica :

815.a-T-s
1+ =10
s'(s+8,14)-(1+T-s)+815

malha fechada

Escolhe-se valores de T, para plotar o root-locus da expressio :
815-a-T-s
s-(s+814)-(1+T-s)+815

Chegou-se a um valor de T = 0,005. Que apresentou um root-locus bom para que

seja determinado um o que resultasse em um baixo sobresinal.

O grafico do root locus obtido, esta na figura 5 .

24

400

o]
A
- -
2
-~
<
5
=
o]
=
= — 8 o pEE o L _
1 1 1 N 1 1 1 R & 1 1 1 1 . i 1 [1
1 t 1 1 1 1 1 = | 1 1 1 . 1 1 1]
1 ' 1 1 1 1 1 1 1 1 . 1 1 1 1
1 1 1 " 1 ' 1 b= o 1 1 1 1 .] 1 1 1
|||||||||||||||||||||||||||||||||||| f=]
} 1 1 \ L [1 A m i 1 1 i 1 1 I]
e O e B o (T 00 SO E L ST O (O
g S o "H T By | o A HEE -
LV NN WU SN B AR U - =1 m 1 1 ' 1 1 1 ' 1
T ' T f r b r & o 2] 1 1 1 1 1 1 i !
1 1 ' i 1 1 1 I] 1 1 1 1 1 1 1
T = I I R E A M
1 { ¥
..|||-.||l|_|l||.-||||_||l|r||||.|||..r||||M m m 1 1 1 1 1] "._]
1 [} 1 1 1] 1 [&, o 1] T 1 1 LR I | 1
1 | 1 f 1 ! t w =] 1 t E 1 ' [A | 1
1 1 1 N 1 1 P .M mw [SR S, IS IS SUCUR SUSpRRN JpS) A GV NS
AERTEEETLEETEL | ¢ Ataaek tebtobet hod= SN S - o R A
1 1 1 r !]] M .m =] 1 f “ " .h “ "
1 | T | 1 1 ' =) m 1 1 1 1 1 | [1
i I 1 _ I I I = o} [5) 1 1 1 1 i/ : i
||||||||||||| - — o o = o = o = o R T L L L o E T AL
il =TTy oo~ 3 [N SECE
“— T 1 i 1]
' 1 1 1 ' 1 -.._u 71 1 1 1 1 1] 1 "
¥]] 1 i I o o [H | 1 3 i 1 1
-|:qu--u_:--qnu-.?n--nu--._--nn_.u-n-m m o [} 1 ' 1 1 1 1 1
b 1 1 1 ' I 1 i = 5 75 Juinfall Sabelal shaehel ulbieiiel minialy hulafie eluba Siatal My
1 1 1 1] i] =T)) o i 1 1 t] 1 1 1
1 1 1 1 1 1 1 - m]] 1 i 1 1 1 1
Rl e e e R L o= CE LT e o]] 1 1] 1 1 1 1
1 1 1 1 i 1 1 v a3 1 1 1 1 1 | | 1
' ' 3 1 1 1 1 % R e SE e S e R N bl
1 1 [' 1 1 1 | L | 1 1 1 1 1
il Bt B bl Wil et = 2 e b = S L AP
= = = [=] [=] = o o - =
L= (=4 * - -
=] 2 ...n__| .ﬂl. m. M w. W] © & - - =
g Bewy 9 s By
o
{=
i
z

25

10

-30 -20
Real s

40

-50

Figura 6 - Regifio do root locus que se deseja que os polos se localizem

11,4
Com estes valores, a resposta a degrau unitario pode ser vista na figura 7 .

A partir desta figura determinou-se o valor de o como sendo ao valor em que

ocorre o cruzamento das linhas. Portanto :
o

Posicso)

oaf--m---

02f----==

29

Figura 7 - Resposta & degrau unitario do sistema controlado

Observa-se que o sistema possui um alto tempo de resposta, com um sobresinal
de 10%.

Para uma enirada rampa unitaria, com velocidade de 0,5 m/s. A resposta obtida

foi a seguinte :

1.2

JRVRTU P ——

2.5

Figura 8 - Resposta 4 entrada rampa do sistema controlado

Observa-se que a resposta teve a caracteristica desejada, com sobresinal dentro
dos 1% que havia sido especificado.
Portanto, planta do controlador ¢ a seguinte :

1+0,057 -5

Gel8)=170.005-s

E existe um ganho proporcional de K = 15557

26

5.3 Resultados da Simulagéo do Controle de Posi¢cao

Para simular como seria o comportamento do robé com este controlador,
utilizou-se o simulink como ferramenta. No modelo, foi considerado o torque de carga
Ty, também foi considerado a saturagio no PWM, e também uma regido, que foi
verificada na pratica, onde para um valor de entrada néo ha resposta de movimento no
motor.

O modelo criado para simulagdo se encontra na figura 9. Nesta, o ganho K1 € o
ganho do controlador, K2 ¢ o ganho do PWM, e K3 é o ganho da relagio de transmissio
que transforma em velocidade do motor em rad/s para velocidade na roda em m/s.

O bloco denominado PWM contém um saturador, e blocos que simulam a regido

onde niio existe resposta. O bloco aberto pode ser visto na figura 10.

Clodk Tempo (5) Cosrente (A) Velocidade {m/g)
Tensdo (V)
Posigie (m)
" __-.. T*Ke.s+ : j}_ |: E %
— Tst1 _"I> +
Entrada
Rampa Controlador Pkt Miotor

Figura 9 - Modelo usado na simulagéo

R e

entiada ‘ Satuiation gaida

Figura 10 - Bloco do PWM com saturagio

O bloco de motor corresponde ao modelo dindmico apresentado na figura 3.
ApoOs as simulagBes, verificou-se que o resultadose encontrava dentro do

esperado, sendo assim, os valores dos ganhos s&o :

27

K1 =15557,

K2 =9.375x107

K3 =1.577x107;

O sinal de entrada utilizado foi uma rampa de posi¢do que corresponde a uma

velocidade de 0,5 m/s. O grafico do sinal de entrada € :

[A A O Y LLE sk Ll sk Bt

Figura 11 - Entrada usada na simulaciio

Foram plotados graficos de tensfio de alimentagio do motor (V,), velocidade do
rob6 (w), posigio do robd (x), e corrente no motor (I.).

Os resultados obtidos se encontram nas figuras abaixo :

13

19} - - - } -- e m e il=as fommnme-

Tensfo VW)
)
1
1
1
1
I
1

T]

A%

i
1
1
1
'
]
Yy P BN
1
1
1
1
1
1
SISy
i
¥
1
1
1
1

1.5 2 a5
Ternpo (3]

Figura 12 - Grifico da tensdo com saturacdo

28

u T T
. — - ————— " H : od H ' ' H i i
H == | H 1 1 T 1 i 1] 1 1 1 1
ool llemed F L 1t) ! . 1 1)] i 1
| [—— 1 1 1 ' 5 ! ! 1 ! ! ! ' i _
) - S T U B B ' ' . | | ! '] !
] - 1] 1 1 i] 1] 1 1 t
I s e e S ! _ e T O fen-- 1.]:._.:.-r:..:...a‘.T:...
R L L L L T L e e e e e o B o el \ | 1 | | Yy 1 1] 1 1
| | 1 1 1 ' 1 1] = ! “ ; . i . ..% T '] 1 1 1
1 1 1 1 1 1 | t ' m 0 = " 1 1 t 1
L 1 1 1 i 1 O \,
1 1 1 1) 1 [} 1 1 n i \ i ' I S] L] 1 1] 1
! 1 1 T ' ! ! 1 1 b3 ' . N i ; i - 1 N 1 1 ' !
1 1 1 r | 1 1 1 1 S5 1 : N . A i @ 1 " | [¥ 1
: d ! ! ! ' ! ! ! Crs < it B ._.||..|_||....nnn......-..::n._...,M O | el ettt Ralalodelh Selloluinds ndainiul
SRR REETEEELE CEEEEEEEE SEET EEEEEET LR 3 T X ' i : = g ' 1N 1 1 !
1 [[[1 - ! l X . ») » T ' 1 1 1 1 1
! ' . g g . i ! ' = w ! " i i i i o = 1 1) 1 1 1
1 1 1 1 '] 1 1 L nm 1 : ! . X m. o i I h 1 1 3
L m_ < ! ! . i : 2 1 ; 1 ' 1 1
1 o P oo 1 = nm J g ! 2] 1 1 | 1 1 !
1 1 ' 1 1 i Byt |
S T SO SUND DUV FOVORU. SR AN P A SN SN SO PRIV TS ISR R SR & e SOl BRI b ¥ 1
b Rl Il b ol EER LEES SEtrabed Rkl s ' T) i r ' _ p . . X i ' i
1 [[T ['] . N i i -+ 1 1 ' 1 !
1 i I 1 1 [1 1 1 - . g “ . i \ - t 1 i 1 !
| | 1 1 1 1 1 1 ' ot ! !] . i i - i 1 1 1 1
| | 1 1 | 1 | (' -m " " . . i . © | 1 f 1 1
1 1 1 1 1) 1 i i I = | L 1 R P
SR SUUUUNS AU U U PN U O Y T £ .20 S R SEEY BESEUEREY EEREAPRRT BURY I Lee- R e DR !
e L A o <7 b ! , . i i = ' 1 I 1 ; L
1 t 1 1 E 1 ! L ' ! ” ' ' ' i 1 1 1 5 |
1 v 1 1 ' 1 ' 1 U ” ") . i 1 ' | H ' 1
1 1 1 ! i 1 | 1 i . i i £ ' i 1 1 1
1 ' 1 1 ') 1 i 1 1 i ! . . X ' ' | 1 1 ;
1 1 1 b]] 1 £ u _ - | o N L L L L
1 1 1 1 | I———} L L3 (=] Ee e [¥-3 o Lo] = ™~
..)) -) o~ - = — s b : - . 3
M 8 - O e T W W & 5 &6 & 58 &6 o) . = =3 o S o
&) iy (s7d PP, @) aedisog

29

2.3

1.5

Tempo [£)

Figura 15 - Gréfico da posigiio

Se ndo houvesse saturacfo nos 12 V, os resultados seriam :

- - v v . o , =
i [1 1 | I ~ 1 1 1 1 1 o 1 | 1 1 1 t
1 1 1 1 t I . 1 1 1 1 1 1 [] [} 1 1
' 1 1 i ¥ ' 1 1 [1 1 1 ' 1 1 1
1 1 1 1 1 1 ~m4w._ 1 1 1 1 1 1 1 1 1 1 i
[1] I]] o3]] 1 1 1 1 1 1 1] _m
“ 1 1 ! 1 1 m 1 1 1 1 1 | 1 1 i 1 1
R [R ' PR Ay [T = S S, 3= ~I=l=l= bmmeag e - o B e Fed == C Crp g pusiigg
1 1 I 1 1 P & 1 1 1 J I @ 1 1 1 1 1
1 | l 1 1 t | ' [1 1 =] 1 1 1 1 1
1 1 i ' '] = 1 1 1 1 1 L 1 1 1 1 1
1 I 1 | 1 § =) 1 1 [1 ' = 1 1 | 1 1
1 ' i] 1 1 o 1 ' 1 1 1 Q 1 1 1 1 1
i 1 | 1 1 1 o L 1 1 1 1 1 n i) [1 1 1 1
aaaalt Rl Tebtof 5 Sl Tl e e A Qo pmmee- F=EI= = r=---=9 p-===- R =l AL o ..M L Eh L T T L R
1 L I 1 1 ! = (=2 ! 1 1 1 t o 1 1 1 1 1
1 1 ! 1 1 1 = = 1 1 ' I 1 = Q] 1 1 1 1
1 ' I 1 ' P - 9) 1 1 1 I g e 1 ' | 1 1
“ 1 ! ' ' 1 m‘ e 1 ' I 1 1 m. mM 1] 1 1 1
1 I 1 '
1 1 i 1 1 : = O , “ | ; " Lad m : : . _ _
1 | 1 |
||||| b Datnhninky Iahaiet | iciiniaie Dbl bl bt w it B Mt | iy ey et da] s et Al Tt Ttk Tl Sl
1 1 1] 1 1 1 1 1 1 I 1 1 1
1 T ! | 1) mm 1 1 [1 t ” 1 1 1 " "
] r i 1 1 1 nm) 1 1 1 t - 1 1 1 1]
1 [} 1 1 1 1 1 1 1 1 I St 1 [} 1 1 1
1 1 I 1 ' 1 1 1 1 [1 t = 1 1 1 1 1
ol i 1w d Va2 W » I B, Lo A R [b) -1 _))] !]
[' 1 1 1 1 =] - 1 i 1 | 1 =] = [J R T [[17T
| ' 1 1 1 1 = 1 1 ' 1 ' 1 1 | 1 1
) i ! | 1 1 - 1 1 1 1 i 1 1 | 1 1
1 i 1 1 1 1 = 1 1 1 1 ' 1 1 1 1 1
' i 1 | ' ' =T 1 1 ' 1 1 1 1 ' 1 1 1
1 ' 1 1 1 1 = 1 1 1 1 ' 1 | 1 1] 1
. 1 ' L L L — X L " s = e e g " L
% = =] = o = =z 2 w o n o w = 5 I) - o] = o =
. b s - = o =5 o= o o o
(ogsuag & aauog (7D spEpRof

30

2.5

1.5

Tervipo (5]

0.5
Figura 18 - Grafico da velocidade

Ul e e D i
o.gf------ —————— P —— e Ty
z ' a :
aﬁ,ﬁ.&—-—----i--—----:-------:------1'- -------
8 : : : :
e ' i .)
O4f------ RS A - P o
: : i :
i 1 1 1
bafp---- e e et GERETEY EEEEEES
: : i :
Uv L 'l 1 L
0 0.5 1.5 2 2.5
Terrgo (5]

Figura 19 - Grafico da posigio

5.4 Discretizagdo do Controlador de Posi¢do

O controlador possui a seguinte fun¢io de transferéncia :

(140o-T-s)

G (s)=K———7F—
=Kty

Utilizando-se o método de transformag#o bilinear, ou seja, fazendo-se a seguinte

T \1+z

a

o 2({1-z"
substitui¢do : s= —(-IJ , onde T, é o periodo de amostragem; pode-se¢ obter a

expressdo do controlador discretizado. Fazendo esta substituico chega-se a :

Gul3) < (T +2-0-T)+(T, -2-a-T)- 27" |
e T R T e
Esta expresséo pode ser escrita como :
K-[(T, +2-0-T)- U@ +(T, -2-a-T)-z" - U@)]=(T, +2-T)- Y(2) +(T, -2-T)-z™" - Y(2)
Transformando para equagfio de diferengas, a expresséio acima fica :

_(T,-2-T) L L2 g Tm2a D)
Yanal = (Ta +2. T) Y anterior (Ta +2. T) uatua] (Ta +2. T) ua.nterior
Para T=0,005,0=114:
g o 00D (OIS0
atual (Ta + 0,0 1) antenior (Ta + 0}() 1) atual (Tﬂ + 0,0 1) anterior
ParaT,=5ms :

¥ atual 20333'yrmteri0r +K'7?93'u _K'7=27'u

atual anterior

ParaT,=7.5ms :
Y ana = 0,143- Y anterior + K - 6,94 - Ugna — K- 6,09 -u

anterior

31

Sendo que y € a saida do controlador, u é a entrada do controlador, ¢ K ¢ o
ganho do controlador que foi determinado como sendo K=15557.

A expressio determinada anteriormente pode ser usada para a implementagéo do
controlador no rob® mdvel, no entanto na expressio a entrada u deve ser dada em metro.

No robd movel, o que é utilizado para determinar a posi¢io sdo pulsos de
encoder, ¢ a cada rotagdo do motor, sdo gerados 500 pulsos de encoder.

Entdo, um deslocamento de 1 metro do robd equivale a 50464 pulsos.

Uma outra relagio importante, é que para um periodo de amostragem T,, uma
velocidade do robd de T m/s equivale a medir uma variagio de 50465T,.

Para converter a expressdo que da o resultado da saida do controlador a fim de
que a entrada, que é o erro entre a referéncia e a posigéo real atual, possa ser dada em
pulsos de encoder, deve-se transformar este valor de pulsos de encoder para metro. Isto
equivale a dividir os termos da expressdo que sfo dependentes da entrada (u) por 50464.
Portanto, basta usar ao invés de K, um K’ = 15557/50464.

Entdo, para a expressdo fica :

Para 5 ms :

Y atwat = 933 Y amterior + 244 U gy = 2,28+ U ey
Para 7.5 ms:

Yatuar = 014" Y aerior + 2,14 Uy = 188 U ey

Sendo que vy é a saida para 0 PMW, € u é a entrada dada em pulsos de encoder,

Observe que ao implementar o algoritmo deve-se saturar o valor da saida
calculado em 127 ¢ —127.

Caso haja necessidade de calcular a expressdo para outro periodo de
amostragem, ou até mesmo outro valor para os coeficientes da planta, basta seguir o
roteiro de calculo deixado nesta se¢do e estes valores podem ser mudados sem grandes
dificuldades.

O controle determinado aqui, foi implemtado sendo que se fez testes com
periodo de amostragem de 5 ms e de 7,5 ms, comparando os resultados obtidos com o
resultado de simulagio. Os resultados obtidos para o movimento de 1 metro com
velocidade de 320 mm/s se encontram dos graficos seguintes, sendo que em vermelho

esta o resultado de simulagfo, € em azul o resultado obtido com o robd.

32

Posicio (m)

Tensdo {V)

Para 5 ms:

L
[ST R SO S R

1Y 8 ESVRORO SO OO, SO

0,6 oo L

B T e e LS

0’2 Y U i =" S S E = | RN = Sy S - S0 U (U £
0 : | ; a R |
{ 0;5 I 1.5 2 2.5 3 3.5

S SRR ‘

10

Tempo (s)

Figura 20 - Grafico de posi¢io observado (5 ms)

[
} } -+ ‘ 1 |
0 0,5 1 1i5 2 2,5 3 ‘ 3,5
............................. A
‘ t
|
|
|

Tempo (s)

Figura 21 - Grafico de tensfo observado (5 ms)

33

Velocidade {m/s)

Para 7,5 ms:

Posigdo (m)

0,45 -

o1

0,35
0,30
0,25
0,20 -
0,15

0,10

0,08 4

0,00

-0,05

-0,10 L

12 +

0,5 1 15 2 25 3 b; 35
Tempo (s)

Figura 22 - Gréfico de velocidade observado (5 ms)

Tempo (s)

Figura 23 - Gréfico de posi¢éo observado (7,5 ms)

34

Tensdo (V)

45 L—
Tempo (s)

Figura 24 - Grafico de tensdo observado (7,5 ms)

Velocidade (m/s)

0,00 R | e i JE—

-0,10

b

Tempo (s)

Figura 25 - Grafico de velocidade observado (7,5 ms)

Tambeém for implementado um algoritmo de aceleragdo, as respostas obtidas

para T, = 7,5 ms com aceleragéio foram as seguintes :

0.8 +

Posigdo {m)
o
o]

0.4

0.2 -

Tempo (s)

Grafico de posigao observado (7,5 ms — com aceleragéo)

=
@
=
.
-]
o]
a
i

v)

0 05 1 15 2 25 3 35 4

Tempo {s)

Figura 27 - Grafico de tenso observado (7,5 ms — com acelerago)

45

36

0.40 -
035 --------- : ffffffffffffff rrrrrrrr i
0.30 -
0.25 -
0.20 -

0.15

Velocidade {m/s)

010 S

0.05 4

0.00 4

.05 -

Tempo (s)

Figura 28 - Grafico de velocidade observado (7,5 ms — com aceleragéo)

5.5 Controle de Velocidade

Foi projetado também um controlador de velocidade para ser usado no
movimento por joystick. O controlador utilizado foi :

Gc(s)=K'(T+S)

Com o auxilio do Matlab, projetou-se este controlador, chegando aos seguintes
valores : T=10 e K=20.
Utilizou-se 0 modelo na figura 29 para simulagio, e determinagéo dos valores de

TeK.

37

Yelocidade {més)]

Corrante (4}

Tensdo (V)

= 10
—— Il K2
g >
Repeating
Sequance Transfer Fon P4 Motor

Figura 29 — Modelo usado para simular controle de velocidade

No modelo, K1 representa a transformagdo da saida do controlador que é um
valor de tensdo, em valor que represente um valor de PWM, ou seja que obedeca a
relagdo de 12 V equivale 4 128. Assim, é possivel simular a saturagio de tensdo e outras
caracteristicas do PWM. K2 = 1/K1, e K3 € a conversdo de velocidade do motor em
rad/s para velocidade do robd em nv/s.

Os resultados obtidos da simulagdo foram os seguintes :

Velocidade
(6 : I T 1 r
05 }
04 st (e MU RS
E 1 1] [] 1
c ‘ : ' ' i
@ 03fh--meer SRR LS bosnoo-adesnooans R
1 1] b 1 ¥
1] 1 1 i ' 1|
= : d 1 : il
g02 =" i = R Rl | it
$ I T AT
0.1 ity ECCCLCt e B 1 G
1 (] [} [|
1 1 [] 1 !
)| SN i SERSESE [ERER L Seoa0s 8 el L S—
AR R R
K] 1 2 3 4 5 b
Tempo (s}

Figura 30 - Grafico de velocidade

38

Tensén

i : '. : : !
10 \ -------- e, G ckmic i odonli Reetn
] S S T
> b
o 5 i i i
‘% B g anssses T poseoee p S
S : : : :
— ; i i i Il
| e i R i
7] — e et e :
: : : i |
0 : ' : '
o 1 2 3 4 5
Tempo (8)
Figura 31 - Grafico de tenséo
Corrente
c] S— SR s WSS (S [l
< i E : E i
2 = - ——— hy
5 ,) : ; :
] N S T
< : : ! : {
i i i i b
Sl S e e e
2fennennes R St M SR
0 1 2 3 4 5 B
Temne (s)

Figura 32 - Grafico de Corrente

Os resultados obtidos foram satisfatorios, sendo que a planta possui um tempo
de resposta bom para uma entrada degrau.
O controlador obtido foi discretizado pelo método de tranformacio bilinear, e

chegou-se a seguinte equacio de diferengas :
Yntual = Yanterior + % ' (2 + T i Tn)) uatua.l + % ' (T ' Ta - 2) ‘ uanterior

No entanto, do modo como foi projetado, a saida é dada em tenséo, € a entrada é

dada em valor de velocidade em m/s, Por isso, deve-se transformar a saida em valor de

39

PWM, considerando o ganho K1 = 10,67 e além disto, transformar a entrada em
diferenga de pulsos de encoder, Como ja foi dito, 1 m/s equivale a 50465T, , sendo
assim basta dividir a entrada por este valor. Fazendo estas duas corregdes, a expressdo
fica ;

10,67

K K
= Voreior +| — C+T-T) Uy +—(T-T, =2)u,, . |l
yatual yantenor [2 (a) atual 2 (a) un!enor} 50465 ‘Ta

ParaT,=5ms:

Yawal = ¥ anterior + 09867 *Uana — 03825 +u

anterior
ParaT,=75ms:

Yanal = ¥ anterior T 03585 W — 05545 ‘u

anterior

6. Implementacdo de Comandos

Como ja foi dito anteriormente, ja existe um software com um sistema de
controle em tempo real que possui rotinas bésicas. Este software ja se encontrava pronto
anteriormente ao inicio deste trabalho, e os comandos € a linguagem de programagio
definidas neste projeto serio implementados aproveitando a estrutura e as rotinas
basicas que este software possui, fazendo-se as adaptagdes e melhorias necessarias.

A linguagem de programagio que foi utilizada é o C, ¢ o assembler do
microcontrolador da Base Movel, ou seja, assembler da familia 51 de
microconiroladores da Intel. Foi utilizado um software denominado "Dunfield
Development System" para compilar o programa em C gerando o cédigo em assembler
do microcontrolador, € assim ser possivel a gravagio do software de controle em
EPROM.

A seguir serfio abordados alguns aspectos importantes sobre a implemtagfio do

sistema de controle, comandos, e fungdes necessérios.

6.1 Sistema de Controle em Tempo Real

O sofiware de controle da Base Mével existente, j4 possuia caracteristica de
tempo real. No entanto, o sistema sofreu algumas melhorias, sendo que a sua estrutura
final para execugfio dos comandos pode ser vista na figura 33.

O sistema pode ser dividido em duas partes principais : 0 programa principal, € a
rotina de tempo real.

No programa principal, ocorre a inicializagdo do sistema, ¢ entiio o programa

40

entra em um loop. Neste loop ocorre o reconhecimento de caracteres € de comandos,
caso um comando valido seja entrado pelo usudrio, o programa realiza a execugio do
comando teclado, este por sua vez pode ser do tipo comando continuo (exemplo :
Mostra continuamente a posi¢éo do robd), ou de execugdo imediata (exemplo : mostra a
posicao atual do robd).

Caso o comando seja do tipo continuo, ocorre apenas a habilitagdo do comando,
que por sua vez € executado de tempos em tempos na area do programa que se destina a
execugdo de comandos continuos habilitados. Estes comandos continuos ndo podem
fazer com que o fluxo do programa pare enquanto ele estd sendo executado, pois pode
ocorrer que mais de um comando continuo esteja acionado. Por isso existe a
necessidade de executa-los somente uma vez, caso habilitados, todas as vezes que ao
percorrer o loop principal se chegar a posicdo de execugdio de comandos continuos
habilitados. Por exemplo : Ao invéz de fazer um loop que mostrasse continuamente a
posicéo do robd, o que se faz € mostrar a posigdo atual do robd toda vez que o programa
passar pela drea de execugdo de comando continuo, € encontrar o comando continuo que
mostra posi¢fo do robd habilitado.

Quando um comando continuo (SHOW CPOSITION) € entrado pelo usudrio, a
habilitagdio deste comando ocorre ao se colocar o codigo deste comando em uma pitha
de comandos continuos habilitados. Quando o comando é cancelado, o que ocorre
pressionando o crtl-x, o cédigo € retirado da pilha.

Da mesma forma que existe o comando continuo, também se¢ implementou os
mdos de execugdo, cujo taratamento se encotra na mesma area e do mesmo modo que o0s
comandos continuos. No entanto estes modos de execugdio sdo habilitados por flags, e
ndo podem ser cancelados com o ctrl-x. Como exemplo desta ultima categoria estd o
MOVETAB, o RUN, a verificagdo se um comando MOVE, MOVEREL, ou
MOVEABS j4 foi executado.

O bloco de reconhecimento de comandos faz a verificagfo se algum caracter foi
teclado, e se foi, ocorre a formagdo de uma linha de comando. Caso esta linha seja
completada, pelo pressionamento de um “return” entio o comando € reconhecido
segundo a sintaxe estabelecida.

Caso ndo ocorra o pressionamento de nenhuma tecla, a execucdo do programa
passa por este bloco sem executa-lo, e neste caso o fluxo cai na execugdo de comandos
continuos habilitados, ja que nfio hd comando imediato para ser executado, € nem

chamada de comando continuo para habilitar flags. Depois da execugdo dos comandos

41

continuos habilitados, o programa volta para o reconhecedor de comandos.

Paralelo ac programa principal, ocorre a execugdio da rotina de tempo real. Esta
rotina tém inicio a cada periodo fixo de tempo. Assim tém-se o confrole preciso do
tempo em que ela estd sendo executada. Nesta rotina ocorre a leitura dos sensores como
encoder e joystick, ocorre o controle de posi¢io e velocidade quando habilitados, ocorre
o calculo de posi¢io atual e velocidade atual, e também ocorre o incremento de
contadores de interrupgéo. Estes contadores possuem a utilidade de fazer com que o
programa principal tenha uma nogiio de quanto tempo se passou. Através deles pode-se
ter um controle de tempo grosseiro no programa principal. As varidveis de posigéo,
velocidade, joystick e encoder ficam disponiveis para uso no programa principal. Nesta
rotina de tempo real também ocorre a captura de pontos para formar a tabela.

Ambas as partes do sistema de controle pode atuar no robd mével de alguma

forma.
Programa Principal Tempo Real
s el :
1 1
! 1
Inicializac8io : - y
do Sistema : v E
i Lentura de Encoder e E
' Joystick !
: |
Reconhecedor : v E
de Comandos i Controle de i
! Velocidade e E
! Posicdo ;
. I I
: y s v i
Execugcio de Habilitagio de Execugdo de :' Calculo de '
Comandos [d------ Comandos Comandos ; Velocidade Atual, e E
Continuos Continuos Imediatos ' de Posigdo Atual '
Habilitados | e !
: :
w | i Contadores de H
\\ \\\ ! Interrupgdo i
\‘ D) | 1
E et ettt | * E
1
1
‘

I
" i
N Robd Mbvel <4----Pp

Figura 33 — Estrutura de Sistema de Tempo Real

42

6.2 Rotinas de Interface com o Usuério

Como ja foi dito, muitos dos elementos de interface com o usuario, ja haviam
sido implementados como prompt, backspace, cabegalho, algumas rotinas de impresséo,
conversdo de caracteres ASCII para hexadecimais e vice-versa, controle da transmiss&o
e recepeio de caracteres pela serial, etc. No entanto o sistema ndo apresentava todos os
componentes de interface necessarios, principalmente a rotina de reconhecimento de
comandos, j4 que sé neste trabalho foi definida uma sintaxe de comandos, e de
programacgdo mais elaborada que deve ser reconhecida e interpretada pelo sistema.
Também foi necessario desenvolver algumas rotinas de conversdio de caracteres, e de
impressdo que ndo havia no sistema antigo, jA que este trabalhava somente com
impressdes em hexadecimal. A seguir serd explicado sobre as rotinas de interface que

foi necessario desenvolver.

6.2.1 Reconhecimento de Comandos

Como visto no item anterior, a fun¢do de reconhecimento dos comandos
depende da sua sintaxe. O sistema deve possuir informagdes sobre os comandos para
saber se o modo de execugdio atual é compativel com o comando, ¢ para isso no
desenvolvimento da rotina de reconhecimento de comandos foi proposta uma estrutura
que guarda no sistema de controle, todos os comandos definidos, bem como
informagdes sobre estes comandos para que se possa saber se 0 comando entrado é
compativel com o modo atual, quantos pardmetros ele possui, se € comando continuo ou
de execugdo imediata, enfim, poder ter maior controle sobre o sistema e ser possivel de
identificar para o sistema, o comando teclado.

A estrutura proposta ¢ formada de dois campos : uma string que guarda o nome
do comando, ¢ um campo de bits que guarda informagdes sobre o comando. Para
guardar todos os comandos disponiveis, faz-se um vetor cujos elementos sdo definidos
como sendo do tipo desta estrutura. Assim, pode-se ter cada comando associado ao
indice do elemento no vetor onde ele foi definido.

A estrutura proposta ¢ a seguinte :

struct comdef {
char *name;
char typebits; 1,

43

Onde “typebits’ € o campo de bits que contém as informagdes sobre o comando,

e cada bit possui o seguinte significado :

7 6 5 4 3 2 1 0

=

Numero de Pardmetros

Possivel de inserir em programas

Impede reconhecimento de caracteres

Comando continuo

Modo de manutengio

Modo de programagio

Modo normal

Um exemplo de como esta estrutura pode ser :

struct comdef Comandos[2];
Comandos[0].name = "SET MODE";
Comandos[0].type = Oxel; /* Esta fungfo pode ser usada em todos os niveis, &
de execuglio imediata, e possui 1 parimetro */

Comandos[1].name = "CENC";
Comandos{1].type = 0x38; /* Esta fungfio funciona apenas no modo de

manutengio, € de execuglio continua, € ndo possul parmetros,

e impede reconhecimento de caracteres que ndio sejam ctrl-x e ctri-z */

A fung¢fio de reconhecimento de comando implementada pega o buffer de linha
de comando, € separa o nome do comando dos pardmetros. Entfio o nome de comando
digitado ¢ comparado com os nomes dos comandos existentes. A partir desta
comparagdo, identifica-se 0 comando digitado, e uma variavel recebe o cédigo deste
comando (indice no vetor de comandos). Também sdo reconhecidos os pardmetros,
transformando a string de parimetros em valores numéricos. Com o cédigo do
comando, pode-se executd-lo no loop da rotina principal (ver diagrama da rotina do
sistera de controle em tempo real), sendo que ele pode ser executado imediatamente se
ndo for continuo, ou pode ocorrer a habilitagio dele, caso seja um comando continuo.

Esta rotina de reconhecimento de comandos altera a varigvel global usda no loop
principal denominada "comando" que guarda o codigo do comando que deve ser
executado, a fungdo de reconhecimento também altera um vetor denominado
"parametros" para guardar os valores dos pardmetros do comando reconhecidos que

deve ser executado. Estas duas variaveis sio responsdveis pela execugiio dos comandos.

44

Na mesma rotina de reconhecimento de caracteres pode ocorre a insergdo de
linhas em um programa. Esta insercio ocorre quando o sistema estd no modo de
programagcdo e o primeiro caracter digitado ¢ um nimero, que corresponde a linha do
programa. Quando as condi¢les anteriores sdo satisfeitas, esta rotina insere a linha
digitada no programa, e nfio retorna o codigo do comando para o programa principal
(variavel “comando™), ja que nfio € desejado que se execute imediatamente a linha de
programa digitada.

Para armazenar um programa na memoéria, optou-se por uma lista ligada onde os
elementos representam cada linha do programa. Maiores informagdes seriio dadas na

secdo de programagio.

6.2.2 Manipulaciio de Valores ASCII, Hexadecimal, e Decimal

Foram implementadas rotinas auxiliares no sistema de controle que fazem a
converséo de caracteres ASCII para valores hexadecimais e vice-versa. A conversio de
uma string em ASCII para valor hexadecimal ¢ utilizada no reconhecimento de
pardmetros entrados em hexadecimal no modo de manuténgdo. O inverso , ou seja,
conversdo de valores hexadecimais em ASCII que pssa os representar ¢ usado para a
impressio de valores de encoder ¢ joystick também no modo de manutenggo.

Tambem foram implementadas rotinas que convertem valores (em hexadecimal)
para caracteres ASCII que representem o valor convertido em decimal. Existem duas
rotinas que foram implemtadas com esta finalidade, uma delas converte e imprime na
tela, a outra guarda o resultado em uma string que pode ser usada para outras
finalidades.

No modo normal e de programacio, foi usado para reconhecer pardmetros
digitados na forma decimal, uma fungfio ja existente na bibliotéca do compilador que
converte uma string de caracteres ASCII em um valor inteiro (atoi). Nestes modos, sdo
usados para a impresséio de alguns valores, a fungfio que converte hexadecimal em

ASCII representando nirmeros decimais citada acima.

6.2.3 Modos de Operacdo - SET MODE <0,1,2>

Para implementago do comando SET MODE foi preciso de uma variavel global
que pudesse guardar o valor do modo de operagdo atual, ou seja, que indicasse através

dos seus trés Gltimos bits (da mesma forma que ¢ indicado na variavel de tipo de

45

comando) qual dos modos estd ativado. Guardando o modo de execucdo atual desta
forma, pode-se fazer uma simples operagio logica de AND entre a varidvel que indica o
modo atual, € a varidvel que indica 0 modo que o comando digitado pode operar, ¢
assim saber se o comando entrado pode ser executado ou néo.

Para diferenciar na interface os trés modos de operacdo, optou-se por mostrar um
tipo de prompt diferente para cada modo, sendo assim exeiste um variavel que guarda o
prompt atual, e esta variavel ¢ alterada quando se muda de modo.

Esta funcgfo também desliga o controle de posigio e velocidade quando se entra
em modo de manutaencio € modo de programagio, e religa o controle quando o modo &
normal. Devido a esta funcionalidade, o comando nfo pode permitir mudangio de modo
quando um movimento que requer controle de posigio ou velociadde estd sendo

executado.

6.2.4 Help (?)

Como parte de um dos comandos de interface, estd disponivel um help que
depende do modo de operagdo atual. Basta pressionar “?” para visualizar os comandos

que estdo disponiveis no modo corrente.

6.2.5 Tecla Ctrl-X e Ctrl-Z

Esta combinagfio de teclas especiais, juntamente com a tecla de help (7) sdo
tratadas de maneira diferente. Ou scja, elas n3o sdo armazenadas na linha de comando
como as teclas numéricas e alfanuméricas, e elas possuem fungdes especiais. No caso
do ctrl-x, ele serve para desabilitar comandos continnos habilitados, e o ctrl-z serve para
resetar o sistema do robo. Estas duas teclas sempre se mantém funcionando mesmo que
o sistema esteja impedido de reconhecer caracteres pela execugdo de algum comando
continuo. Ja a tecla “?7”, também n#io é colocada na linha de comando, e no instante do

seu pressionamento, o help é mostrado.

6.3 Controle de Posi¢do — Comandos de Movimento

O controlador de posig¢io projetado, como visto anteriormente, obteve um bom
resultado. Este sistema de controle de posigio se mantém sempre acionado quando se
esta no modo normal. No modo de manutengio ¢ no modo de programacio, como ja foi
dito, o sistema de controle ¢ desligado, sendo que s6 funciona enquanto um comando de

movimento estd sendo executado.

46

A seguir serdo abordados alguns aspectos relevantes sobre o controle, sobre as
varidveis ¢ comandos envolvidos, e sobre os problemas enfrentados na implementacgo
dele.

6.3.1 Aceleracio

Para implementar a acelerag#o, dividiu-se basicamente em dois casos :

e O robd acelera, atinge a posigéo intermedidria sem ter atingido a velocidade

de entrada e comega adesacelerar;

* O robd acelera, atinge a velocidade definida, fica com velocidade constante,

e desacelera;

Foi definido uma flag que indica quando foi atingido a posicao intermediaria do
movimento. Foi definido uma varidvel que corresponde ao quanto deve-se somar na
referéncia de posigdo. Esta varidvel age como se fosse a velocidade pois a cada periodo
de interrupgfio, € somado na referéncia de posi¢io o valor desta varidvel. Esta
velocidade comega em zero e vai sendo incrementada de uma parcela fixa.

Também foram definidas flags que dizem quando o robd deve desacelerar,
quando est4 na primeira metade do movimento, quando estd com velocidade constante,
¢ um contador para indicar quanto o robd andou em velocidade constante até a posigio
intermedidria.

O algoritimo funciona assim : A variavel de velocidade comega em zero e vai
sendo incrementada a cada periodo de amostragem. Se o robd atingiu a posigio
intermedidria sem ter atingido a velocidade constante, comeca a desacelerar. Se o robd
estiver acelerando e atingir a velocidade constante definida, seta a flag de velocidade
constante € comega a incrementar o contador para saber se quanto deslocou até a metade
com velocidade constante. Atingindo a posi¢do intemediaria, comega a decrementar o
contador até chegar ao zero. Entdio pode desacelerar.

Com este agoritmo implementou-se a aceleragio do robd, e os resultados podem

ser vistos nos graficos apresentados na segio de controle de posicio.

6.3.2 Calculo de Posicio Absoluta Atual

Para determinagio da posigio absoluta atwal do rob6, optou-se por fazer um
sistema que fosse possivel de determinar a posi¢do de maneira rapida, sem perder muita
precisdo, € que pudesse calcular a posigdo sempre que houvesse movimento do robd,

seja este movimento provocado por joystick, por atualgdo direta no motor, ou por

47

comandos como MOVE, ou MOVEARBS.

Sendo assim, foi implementado na rotina de tempo real um algoritmo que
calcula a variagdo da leitura do encoder entre duas interrupgbes (periodos de
amostragem onde se entra na rotina de tempo real) consecutivas. Caso esta variaco for
diferente de zero, o sistema 1€ a posi¢do angular das rodas, e atualiza em variaveis de 32
bits que guardam as posicdes absolutas, o quanto o robd se deslocouem X eem Y.

As posi¢Oes absolutas s3o guardadas nestas variaveis de 32 bits, e estio em
unidade de pulsos de encoder. Isto € feito para que ndo se perca tempo e precisdo na
conversdo de unidades, ja que a leitura natural de posicéiio € feita em pulsos de encoder.
Desta maneira, as conversdes para milimetros sfio feitas no programa principal quando
se deseja mostrar ao usuario, ou fazer alguma operagdo interna com os valores em
milimetros.

Assim resolveu-se o problema do calculo da posigio absoluta atual.

6.3.3 Comando MOVE, MOVEREL, e MOVEABS

A rotina de comando de movimento mais simples que se utiliza do controle de
posi¢do ¢ a do comando MOVE. Este comando faz com que o robé se translade de uma
distancia dada pelo pardmetro deste comando. Nesta rotina, a distdncia entrada como
pardmetro & convertida de milimetros para nimero de pulsos de encoder, e entio
guardada em uma varidvel que indica a posigéo relativa final em pulsos de encoder. O
valor do encoder no inicio do movimento também ¢ guardado em outra variavel. Uma
referéncia de posi¢lio é gerada a cada interrupgfo, com base na porcentagem de
velocidade maxima que foi entrada como pardmetro.

Sabendo-se o valor do encoder no inicio do movimento, o valor do encoder no
instante atual, o valor da referéncia, ¢ o valor da posic¢éo relativa final em pulsos de
encoder, pode-se calcular o erro do controlador e assim fazer com que o sistema de
controle de posi¢do funcione corretamente.,

Para este comando, ainda se implementou uma flag que indica que o robd esta
em movimento € ndo chegou a sua posigdo final. A flag ¢ setada sempre que se inicia o
deslocamento, ¢ é resetada quando o robd atinge a posi¢fio final desgjada (com uma
determinada preciséio), € para de se mover. Esta flag € muito util quando este comando ¢
usado como um comando de programa, ja que ela indica quando se pode comecar a
execugdo de um novo comando do programa, ela também € util pois indica ao sistema

que o robd estd se movendo € o usuario ndo pode executar outro movimento enquanto

43

este ndo acabar.

Para implementar o comando MOVEARBS, utilizou-se as variaveis que indicam a
posicio absoluta atual do robd, e também uma varidvel que indica a diregdo das rodas.
Assim, quando uma coordenada é entrada como pardmetro do comando, € o sistema de
coordenadas é o cartesiano, determina-se a partir da coordenada absoluta atual, qual € o
deslocamento em X e em Y que o robd deve fazer. A partir destes valores chega-se 2 um
valor de dngulo que as rodas devem rotacionar, e um valor de distincia que o robd deve
se deslocar. Apos, usa-se duas fungdes basicas de movimento que sio ROTATE, ¢
MOVE. Quando a coordenada de entrada estd no sistema polar, esta coordenada €
transformada para cartesiana, € entfio realiza-se o procedimento descrito acima. Da
forma com que foi implementado, o robd realiza a rotagio das rodas de &ngulos entre
-180 e +180, faz o deslocamento sempre na diregdo positiva, no entanto com uma
pequena alteragiio ¢ possivel fazer uma rotagiio somente entre 90 e +90 ¢ entdo ajustar
a diregio do movimento, que seria negativa em alguns casos. Todos os cdlculos de
posigdo ja estdo preparados para este tipo de movimento.

O comando MOVEREL ¢ simples ja que basta pegar o angulo e a distincia
fornecidos como pardmetros para 0 comando quando o sistema de coordenadas € o
polar, ou determinar o 4nguio e o deslocamento que o rob6 deve fazer a partir do
deslocamento em X e em Y passados como pardmetros quando o sistema de
coordenadas € cartesianos.

E importante observar que os pardmetros de entrada sfo inteiros em milimetros,
portanto nfo ¢ possivel movimentos superiores a 30 metros. Também ocorre esta
limitagio quando se mostra a posi¢do atual, nfio consegue-se mostrar posi¢des maiores

que 30 metros.

6.3.4 Funcdes Seno, Coseno, Arco Tangente, e Teorema de Pitagoras

E importante observar que os calculos envolvidos nas operagdes de céculo de
posi¢des descritas nos dois itens acima, usam fungdes como seno, cosseno, arco
tangente e teorema de Pitagoras. Isto nos causa um problema que € o de operagdes com
valores ndo inteiros, ou até mesmo menores que zZero.

O microcontrolador, e até mesmo o compilador em C utilizado nfo possw
fungdes que usam ponio variaveis de ponto flutuante, assim precisou-se trabalhar
sempre com valores inteiros.

Para calculo da hipotenusa usando os catetos, expandiu-se em série até um termo

49

que obtive-se uma precisdio de cédlculo razodvel a expressdo do teorema de pitigoras, ja
que ndo havia disponivel a fungfio raiz quadrada. Trabalhou-se nestas fungdes, com
valores de entrada e saida em inteiros de 16 bits, no entanto no interior da fungfo
utilizou-se variaveis de 32 bifs, ja que os valores precisavam ser elevados a potencia de
ordem dois ou trés.

As fungdes seno, cosseno foram implementadas usando uma tabela de coseno,
onde o indice da tabela representa o angulo em grau, e o valor na tabela é o cosseno
multiplicado por um valor que ¢ poténcia de 2, no caso implementado, multiplicou-se
por 64. Usa-se poténcia de 2 para facilitar as operagdes de divisdes pois assim elas
podem ser feitas mais rapidamente. A tabela vai de 0 4 90 graus, variando de grau em
grau.

Para implementacfio da fungio que retorna o angulo cujo o cateto oposto, cateto
adjacente € a hipotenusa sdo conhecidos,fungéo que se entitulou arco tangente, utilizou-
se a tabela de cosenos para determinar o angulo. Calculou-se o coseno, ou 0 seno,
dependendo de qual dos catetos era maior, multiplicou-se por 64, € procurou-s¢ na
tabela, qual era o indice que corresponde-se ao valor mais proximo, determinando assim
o0 angulo.

Observe que em todas as contas envolvendo estas fungdes, mesmo procurando
na sua implementag@io diminuir os erros de truncamento, este tipo de erro continua

existindo.

6.3.5 Célculo de Posiciio — Comando MOVE

Como pode ser visto anteriormente, no calculo da posi¢do atual absoluta a cada
interrupgéo de tempo real, ocorre muitos erros de arredondamento, pois ela se utiliza de
fungdes de seno e coseno para calcular o valor do incremento da posigdoem X e em Y,
além do mais, este calculo ¢ feito com valores pequenos de pulsos de encoder (variagiio
de pulsos entre uma interrupgfio € outra) e assim acumula 0s erros ao longo do seu
movimento.

No entanto, quando se tm certeza de que o movimento sera uma reta, o que so
pode ser afirmado para os comandos MOVE, MOVEREL, e MOVEABS, entiio pode-se
fazer o célculo da posigéo baseado na posigdo absoluta inicial, e no deslocamento em
pulsos de encoder durante o movimento. Este calculo de posigio ndo impede que o
outro calculo seja realizado, mas quando ¢ executado um movimento do tipo citado, a

posi¢#o atual ¢ calculada com base em todo o movimento, e o valor da posigdo absoluta

50

final € atualizada ao término deste calculo. Observe que ndo ha duplicidade de varidveis
de posic¢do, e sim tudo ¢ atualizado em uma (nica variavel.
Este algoritmo faz com que o erro de truncamento diminua quando se t&m

certeza de que o movimento ocorreu em linha reta, sem variagdo do angulo das rodas,

6.4 Set de Pardmetros

Para guardar as velocidade de translagio maxima e default, bem como as
velocidades de rotagiio maxima e default foram usadas variaveis globais, que séo
ajustadas através dos comandos: SET TRANSMAXVEL, SET TRANSVEL, SET
ROTMAXVEL, ¢ SET ROTVEL respectivamente. O (nico cuidado com estas fungdes
se da em relagfio a nfio deixar que os valores entrados pelo usudrio sejem maiores que os
permitidos, e também néo pode ser permitido setar a velocidade maxima quando o robd
esta em movimento.

Os comandos SET JOYSTICK e SET TABLE serfio discutidos posteriormente.

O comando SET COORDENATE apenas altera o valor de uma flag que indica
se o sistema esta usando coordenadas cartesianas ou polares.

O comando SET MODE ja foi discutido anteriormente.

6.5 Comandos de Exibi¢cdo

Nesta categoria se encontra basicamente os comandos que permitem visualizar a
posigéo, a velocidade ¢ o valor doss pardmetros do sistema apresentados anteriormente,

Os comandos SHOW POSITION e SHOW CPOSITION convertem as variaveis
de posigdo atual absoluta, de pulsos de encoder para milimetros, e imprimem na tela.

Os comandos SHOW VELOCITY ¢ SHOW CVELOCITY fazem o mesmo com
a variavel que guarda a diferenca na posi¢cio do encoder entre duas interrupgles de
tempo real.

As conversdes sdo feitas seguindo a seguinte relagio : 1m equivale a 50464
pulsos de encoder, e 1m/s equivale a uma variagio de 50465T,, onde T, ¢ o periodo de
amostrage em segundos.

Quando a fungio SHOW CVELOCITY ou SHOW CPOSITION ¢ acionada,
mostra-se continuamente a velocidade em valores decimais, e o sistema nio reconhece
nenhum caracter digitado exceto 'ctrl-x' (cancela ultimo comando continuo ativado) e

‘ertl-z' (reseta robo).

51

6.5 Movimento através do Joystick — SET JOYSTICK

O movimento do robd através do joystick € habilitado e desabilitado através do
comando SET JOYSTICK. Este comando nfo é um comando continuo, pois ele ndo
pode ser cancelado por ctrl-x. Seu codigo nfio vai para a pilha de comandos continuos
sendo executados. No entanto, embora nio seja um coando continuo, seu funcionamento
¢ semelhante, pois € setada uma flag que ativa este comando, e ele entdo é executado na
mesma area de programa que os comandos continuos sdo executados. Optou-se por
fazer assim, para distinguir os comandos que podem ser cancelados por ctrl-x
(comandos continuos) e os que tém carater continuo mas nfo podem ser cancelados,
estes ultimos habilitados por flags. Uma vantagem das flags ¢ que elas sdo rapidas de
serem comparadas, ¢ este tipo de comando normalmente coloca restrigdes para a
execucdo de outros comandos.

Quando o robd esti neste modo, € acionado um controle de velocidade, e
desligado o controle de posigéo, sendo que a referéncia para o controlador ¢ obtida da
seguinte forma : o valor atual do eixo do joystick ¢ lido, e entdo através de uma tabela é
pego o valor de referéncia, em porcentagem de velocidade maxima, para o controle de
velocidade. Este valor de referéncia € proporcional ao eixo do joystick. Desta forma se
obtém uma velocidade proporcional & posigdo do eixo do joystick.

Como o controle de posicdo € desligado, nfo € possivel usar joystick quando se
estd usando este controle, ou seja, quando robé em movimento, quando executando
programa, etc.

Para a rotagdo das rodas também ¢ feito uma rotina semelhante, no entanto nio

se faz um controle de velocidade ja que o motor de passo opera em malha aberta.

6.6 Tabela de Pontos

6.6.1 SET TABLE
Atraves do comando SET TABLE pode-se habilitar ou desabilitar o modo de

captura de posigdes para a construgio de uma tabela. Como feito para o SET
JOYSTICK, utilizou-se uma flag que indicasse quando a captura estd habilitada ou ndo.
Sendo assim, este comando nédo ¢ comando continuo.

A captura dos pontos ¢ feita sempre que se aperta o botdo, € € preciso guardar o
ponto no instante que foi apertado o botdo, por isso colocou-se a rotina de captura de

pontos na interrupgdo de tempo real. A captura dos pontos seria impossivel se ndo

52

houvesse o calculo da posigdo absoluta atual a cada periodo de amostragem, mesmo
quando o comando sendo executado descreve uma linha reta (MOVE).

Quando SET TABLE ¢ ligado, a posi¢do absoluta atual em milimetros ¢
calculada, e guardada em uma varidvel auxiliar. Quando o botéio € pressionado, calcula-
se a posi¢ao atual em milimetros, e armazena-se em dois vetores o deslocamento em X ¢
em Y entre as duas posi¢des. Entdo o indice do vetor ¢ incrementado, € a posigdo
absoluta guardada novamente para ser possivel o calculo do deslocamento relativo no
préximo click de botfo. Deve-se tomar cuidado para que néo se passe do limite fisico de
memdria, estourando o espago dos vetores de pontos.

Quando SET TABLE ¢ desligado, guarda-se o indice do final da tabela, para que

seja possivel controlar sua posterior execugio.

6.6.2 MOVETAB

Composta a tabela, esta pode ser reproduzida através do comando MOVETAB.

Como a tabela de pontos ¢ formada por posigdes relativas, ja que o importante ¢
a trajetoria realizada, e nfio a posigéo absoluta desta trajetdria, para a execugdo da tabela
basta realizar um comando semelhante ao MOVEREL para coordenadas cartesianas
para cada conjunto de pontos X e Y capturados.

Quando MOVETAB ¢ executado, aciona-se uma flag a semelhanga de SET
TABLE e de SET JOYSTICK, assim, ndo pode ser cancelado por ctrl-x. Entretanto, este
comando poderia ser implementado de maneira diferente como um comando continuo, €
ent&o poder ser cancelado.

Apos ser setada aflag, o comando € executado na area de execugio de comandos
continuos, sendo que ¢ executado o movimento relativo do rob6 para cada par de
pontos, ndo passando para o par seguinte enquanto o robé ndo executar todo o
movimento. Ao final da tabela indicada pela variavel de fim de tabela, a flag ¢ resetada.

E importante observar que este comando pode ser usado dentro de um programa,
¢ se usado for a, 0 usuario possui o prompt para realizar comandos que sejam permitidos

enquanto se executa 0 MOVETAB.

53

6.6.3 LOADTAB ¢ UPLOADTAB

Como os valores sdo armazenados em um espaco da memdria, estes podem ser
salvos em arquivo através do comando UPLOADTAB, enviando os pontos no formato
especificado. Também podem ser carregados de arquivo através do comando LOAD. E
importante observar que da forma que foi implementado, estes dois comandos ndo

podem ser usados quando o Tobd estiver se movendo.

6.7 Programagao

Para armazenar o programa na memoria, optou-se por uma lista ligada onde os
elementos representam as linhas do programa. Cada elemento constitui de uma estrutura
que € formada por uma variavel que guarda o valor da linha, outra variavel que guarda o
codigo do comando, e um vetor para armazenar os pardmetros do comando, e de um
ponteiro para o préximo elemento. Fazendo a armazenagem desta forma, pode-se
utilizar o algoritmo de reconhecimento de comandos descrito anteriormente para
interpretar os comandos e armazena-los de forma interpretada na lista ligada que forma
0 programa. Para utilizar o mesmo algoritmo basta adicionar o reconhecimento do valor
da linha de programa antes do nome do comando, e fazendo com que os valores
interpretados sejam armazenados em um novo elemento da lista criado e que serd
inserido no programa posteriormente,

Neste algoritmo de inserco, verifica-se no tipo do comando reconhecido, se cle
pode ser inserido como comando em um programa, se ndo puder, entio nfo ocorre a
inser¢do na lista ligada, e o elemento criado dinamicamente é apagado.

Para administrar a lista ligada, foram implementadas rotinas que inserem,
buscam, e apagam elementos em uma lista ligada, sendo que a entrada destas rotinas é
sempre o valor da linha, e a lista ligada se encontra sempre organizada por ordem
crescente desse valor. Tomou-se o devido cuidado para nunca inserir um elemento na
lista, se ela ja possuir um elemento com o mesmo ntmero de linha.

A estrutura que foi usada para a lista foi a seguinte

struct ProgElement {
int Linha;
char Comando;
int Parametros[3];
struct ProgElemento *NextElemento };

onde :
Linha € o valor da linha de programa do elemento;

Comando ¢ o cédigo do comando desta linha;

54

Parametros guarda os parametros digitados para o comando;

NextElemento € o ponteiro para proximo elemento na lista.

E importante observar que esta estrutura foi escolhida por varios fatores. Um
deles porque ela ¢ semelhante 4 maneira com que qualquer comando é tratado, ou seja,
encontrando-se o codigo correspondente ao comando, e guardando os pardmetros em
variaveis que sdo utilizadas no programa principal quando a rotina do comando est4
sendo executada.

Outro fator estd relacionado com o fato de que & necessario a execugio do
programa em tempo real, sendo que se tornaria complicado ter que interpretar o
programa no momento de sua execucfio. Assim decidiu-se elaborar um linguagem que
fosse possivel de ser interpretada na medida que as linhas sdo inseridas, ¢ que fosse
compativel com a estrutura de comandos definida. Isto influenciou na escolha da
estrutura da linguagem, € nos comandos de controle de execugdo, na medida que ndo
poderiam ser usados estruturas de “if” ¢ “while” parecidas com a de C e Pascal, ja que
este tipo de estrutura requer que apos a edigdo do programa, se faga uma interpretago e
compilagio do programa para que se determine onde estfio o fim do “while” e do “if”. A
solugdo para a estrutura de linguagem foi apresentada anteriormente, na segio onde se
descreve a definicdo de comandos. Observe que os comandos de “if” definidos
apresentam como um dos pardmetros, o niimero da linha para onde o programa deve ir
caso a comparagfo esteja correta.

Portanto, a forma como se definiu a estrutura da linguagem, o método com que
o programa ¢ armazenado, ¢ o interpretador de comandos, permite a execucfio do
programa de maneira ripida e natural para o sistema de controle em tempo real

apresentado.

6.7.2 RUN

Para implementar o comando RUN, que é responsavel pela execugdo do
programa, fo1 necessario definir um ponteiro que aponta para a linha do programa que
deve ser executada ("pLinhaAtual"), e uma flag que indica que o programa est4 sendo
executado. Uma vez iniciado a execugdio do programa, o tratamento do RUN ¢ feito
como se fosse um comando continuo, desabilitando o reconhecimento de caracteres,
entretanto do modo que foi implementado (por flag) ele ndo cancela a execugdio com o

ctrl-x, mas pode ser feita uma alteragdo simples para que o comando RUN se torne um

55

comando continuo. Sempre quando nfio hd comando sendo executado, ou seja, ja
acabou a execugdo do comando anterior, a varidvel "comando" que guarda o cédigo do
comando que deve ser executado recebe o c6digo do comando que se encontra na linha
de programa apontada pelo ponteiro "pLinhaAtual"; a varidvel "parametros” também
recebe os valores dos pardmetros da linha de programa apontada pelo mesmo ponteiro.
Feito isto, o ponteiro "pLinhaAtual” é atualizado para o préximo ponteiro, € entfio o
programa volta para o inicio do loop, passando a executar 0 comando com o codigo que
acabou de ser dado para a variavel "comando.

E interessante observar que o sistema sabe que um comando acabou de ser
executado pois se este comando for de natureza imediata e nfo for de movimento, a
execugdo dele acaba quando o programa chega na drea de execugfo de comandos
continuos habilitados, que ¢ onde o comando RUN se encontra. Caso o comomando seja
de movimento, o comando RUN s6 manda executar o proximo comando quando o robd
estiver parado, ou seja, quando acabar 0 movimento (flag que indica movimento do
robd resetada). O RUN também ndio manda executar um novo comando caso a flag de
MOVETAB estiver setada, isto impede que seja executado um novo comando ao
término do movimento do primeiro ponto da tabela (j4 que 0 MOVETAB possui vérios
comandos MOVEREL implicitos). Com isso, resolveu-se o problema de execugio do

programa.

6.7.3 IFEQ, IFNE, IFGT, etc, e GOTO

Os comandos do tipo IFEQ, IFNE, IFGT, etc, foram de simples implementaco,
fazendo com que o valor de pLinhaAtual fosse alterado conforme o resultado da
comparagdo. Usou-se nestas rotinas a fungéo de busca na lista ligada.

O comando GOTO também altera o valor de pLinhaAtual como nos comandos

anteriores, com excegdo da comparagdo que nio existe.

6.7.4 SET VAR, INC, e DEC

Os comandos de SETVAR, INC, e DEC também sdo rotinas simples que alteram
o valor de elementos de um vetor usado para implementar os contadores internos do
programa.

Com os comandos de controle de execugdo descritos neste item e nos itens
anteriores pdde-se definir a linguagem, e implementar a execugiio de programas no

sistema de controle do robé.

56

6.7.5 CLEAR, LIST e EDIT

Na fungdo CLEAR foi usada basicamente a fungfio de apagar elemento da lista, é
claro que primeiro ¢ verificado se o elemento existe.

O comando LIST utiliza 0 comando de encontrar elemento na lista, ¢ também
um comando de imprimir comando na tela, nesta hora o cddigo do comando ¢
decodificado, eseu nome impresso.

Para o comando EDIT, utilizou-se de fun¢es que convertessem valores inteiros
em strings ASCII que representassem o valor em decimal, além disso foi necessério
copiar esta string para o buffer de linha de comando. Depois que o comando foi jogado
novamente para a linha de comando no formato de string, basta apaga-lo da lista, pois
no caso do usugrio fazer as mudangas necessarias ¢ pressionar enter, sem ter apagado a
linha da lista, o sistema tentard inserir um elemento com um niimero de linha igual a um
existente. Por estes motivos, deve-se apagar o comando para que ele possa ser inserido

novamente depois de editado.

6.7.6 Comandos de Espera

Para a implementago do comando WAIT TIME usou-s¢ um contador de
interrupgdes. Assim, o programa fica parado em um ponto até que o contador de
interrupgdes atinja o valor correspondente ao tempo desejado.

O comando WAIT KEY, ¢ WAIT BUTTON n#o apresentaram problemas na
implementagdo, sendo que eles fazem com que o programa fique parado até que uma

tecla ou um botdo respectivamente seja apertado.

6.7.7 LOAD e UPLOAD
Os comandos LOAD e UPLOAD s#o parecidos com os comandos LOADTAB e

UPLOADTAB, sendo assim, apresentam os mesmos problemas € 0s mesmos

algoritmos.

6.8 Sugestées para Implementagdo Futura

Existem alguns comandos que podem ser modificados e outros comandos novos
que podem ser implementados, sem grandes alteragfes no sistema. Alguns deles séo :

¢ SET ACCELERATION <1,0> : Liga ou desliga a celera¢do do robd;

¢ Pode ser implementado um limite para 0 movimento do robd, de modo que

ndo permita que ele atinja a fronteira de 30 metros.

57

e Pode-se fazer uma versio do MOVETAB para trabalhar com tabela em
coordenadas polares, o que facilitaria a execugdo da tabela, pois os
pardmetros seriam deslocamento e angulo de rotagfo. Ndo foi feito isso na
captura de pontos, pois usaria as fungdes de arco tangente e a fungfio de
Teorema de Pitagoras que apresentam dentre as fungles maiores erros
devido arredondamento, no entanto poderia ser feito e realizado testes para
verificar a precisfo.

e SHOW POSITION pode ser implementado para mostrar tanto coordenadas
cartesianas quanto coordenadas polares. Usa-se também as fungdes de arco
tangente € o teorema de Pitdgoras.

e Na mmplementagdo das rotinas de movimento (MOVE, MOVEABS,
MOVEREL) o rob0 realiza a rotagdo das rodas de angulos entre —180 ¢
+180, fazendo o deslocamento sempre na diregio positiva. Poderia ser feito
uma rotagio somente entre —90 e +90 e entfo haveria o ajuste da dire¢fio do
movimento, que seria negativa em alguns casos. Todos os calculos de
posicdo j& estdo preparados para este tipo de movimento.

Estas s3io algumas das modificagdes simples de serem feitas € que

acrescentariam alguns detalhes de funcionalidade ao sistema.

58

7. Conclusao

Foi possivel desenvolver e implementar um software para sistema de controle de
movimento em tempo real de um robd mével, sendo que para isso foram definidos
comandos de alto nivel suportados pelo sistema. Todos os comandos de alto nivel
propostos puderam ser implementados.

Desenvolveu-se uma linguagem de programagdo adequada para o sistema de
controle real do robd, de forma que ¢é possivel usé-la para escrever programas que
descrevam trajetorias especificas.

Implementou-se com sucesso o controle de posigdo do robd, que ¢ usado nos
comandos de movimento. Também foi implementado rotinas que permitem o
movimento do robd através do joystick, sendo que € possivel criar uma tabela de
posigbes a medida que o usuario movimenta o robd ¢ aperta o botdo do joystick. Esta
tabela pode ser reproduzida posteriormente.

O controle de posi¢do apresentou um bom resultado, sendo que possuindo as
equagdes de diferenca em fungdo do periodo de amostragem, fica facil recalcular as
constantes das eqagfes caso seja preciso alterar o periodo de amostragem.

O periodo de amostragem atualmente implementado foi o de 7,5 ms que
apresentou um resultado muito proximo ao de 5 ms, nfo perdendo muito desempenho
do controlador.

Portanto, com o software implementado obteve-se um sistema com wuma
linguagem de programacdio no qual ¢ possivel fazer com que o robd se movimente
através de trajetérias definidas pelo usudrio, bastando usar 0s comandos implementados

na programacgio.

59

8. Referéncias Bibliograficas

[1] Kuo, Benjamin C., Awtomatic Control System, 7th ed., New Jersey, Prentice
Hail, 1995

[2] Jones, Joseph L.; Flynn Anita M.; Mobile Robots - Inspiration to
Implementation, Wellesley, A. K. Peters, 1993

[3] Tashibana, Luis S.; Fujiwara, Renato; Trabalho de Formatura : Projeto
Base Movel - 2a. Fase de Desenvolvimento do Hardware Eletrénico,
Departamento de Eng, Mecénica, EPUSP, 1995.

[4] Mak, Ronald; Writing Compilers & Interpreters - an Applied Approach,
New York, John Wiley & Sons, Inc, 1991

60

